These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 35360318)

  • 1. Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of Plant-Associated Fungi and Oomycetes.
    Bradley EL; Ökmen B; Doehlemann G; Henrissat B; Bradshaw RE; Mesarich CH
    Front Plant Sci; 2022; 13():853106. PubMed ID: 35360318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Glycoside Hydrolases in Phytopathogenic Fungi and Oomycetes Virulence.
    Rafiei V; Vélëz H; Tzelepis G
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How filamentous plant pathogen effectors are translocated to host cells.
    Lo Presti L; Kahmann R
    Curr Opin Plant Biol; 2017 Aug; 38():19-24. PubMed ID: 28460240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant cells under siege: plant immune system versus pathogen effectors.
    Asai S; Shirasu K
    Curr Opin Plant Biol; 2015 Dec; 28():1-8. PubMed ID: 26343014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Duplication and neofunctionalization of a horizontally-transferred xyloglucanase as a facet of the red queen co-evolutionary dynamic.
    Attah V; Milner DS; Fang Y; Yan X; Leonard G; Heitman J; Talbot NJ; Richards TA
    bioRxiv; 2023 Oct; ():. PubMed ID: 37873201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apoplastic effector proteins of plant-associated fungi and oomycetes.
    Rocafort M; Fudal I; Mesarich CH
    Curr Opin Plant Biol; 2020 Aug; 56():9-19. PubMed ID: 32247857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the sugar code: the role of microbial extracellular glycans in plant-microbe interactions.
    Wanke A; Malisic M; Wawra S; Zuccaro A
    J Exp Bot; 2021 Jan; 72(1):15-35. PubMed ID: 32929496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reprogramming of plant cells by filamentous plant-colonizing microbes.
    Doehlemann G; Requena N; Schaefer P; Brunner F; O'Connell R; Parker JE
    New Phytol; 2014 Dec; 204(4):803-14. PubMed ID: 25539003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EffectorP 3.0: Prediction of Apoplastic and Cytoplasmic Effectors in Fungi and Oomycetes.
    Sperschneider J; Dodds PN
    Mol Plant Microbe Interact; 2022 Feb; 35(2):146-156. PubMed ID: 34698534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seeking the interspecies crosswalk for filamentous microbe effectors.
    Stuer N; Van Damme P; Goormachtig S; Van Dingenen J
    Trends Plant Sci; 2023 Sep; 28(9):1045-1059. PubMed ID: 37062674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apoplastic Proteases: Powerful Weapons against Pathogen Infection in Plants.
    Wang Y; Wang Y; Wang Y
    Plant Commun; 2020 Jul; 1(4):100085. PubMed ID: 33367249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effector biology during biotrophic invasion of plant cells.
    Chaudhari P; Ahmed B; Joly DL; Germain H
    Virulence; 2014; 5(7):703-9. PubMed ID: 25513771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How eukaryotic filamentous pathogens evade plant recognition.
    Oliveira-Garcia E; Valent B
    Curr Opin Microbiol; 2015 Aug; 26():92-101. PubMed ID: 26162502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broad-specificity GH131 β-glucanases are a hallmark of fungi and oomycetes that colonize plants.
    Anasontzis GE; Lebrun MH; Haon M; Champion C; Kohler A; Lenfant N; Martin F; O'Connell RJ; Riley R; Grigoriev IV; Henrissat B; Berrin JG; Rosso MN
    Environ Microbiol; 2019 Aug; 21(8):2724-2739. PubMed ID: 30887618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation.
    Agler MT; Ruhe J; Kroll S; Morhenn C; Kim ST; Weigel D; Kemen EM
    PLoS Biol; 2016 Jan; 14(1):e1002352. PubMed ID: 26788878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes.
    Jedelská T; Luhová L; Petřivalský M
    J Exp Bot; 2021 Feb; 72(3):848-863. PubMed ID: 33367760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal.
    McGowan J; Fitzpatrick DA
    mSphere; 2017; 2(6):. PubMed ID: 29202039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A plethora of virulence strategies hidden behind nuclear targeting of microbial effectors.
    Rivas S; Genin S
    Front Plant Sci; 2011; 2():104. PubMed ID: 22639625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WideEffHunter: An Algorithm to Predict Canonical and Non-Canonical Effectors in Fungi and Oomycetes.
    Carreón-Anguiano KG; Todd JNA; Chi-Manzanero BH; Couoh-Dzul OJ; Islas-Flores I; Canto-Canché B
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycoside hydrolases family 20 (GH20) represent putative virulence factors that are shared by animal pathogenic oomycetes, but are absent in phytopathogens.
    Olivera IE; Fins KC; Rodriguez SA; Abiff SK; Tartar JL; Tartar A
    BMC Microbiol; 2016 Oct; 16(1):232. PubMed ID: 27716041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.