These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 35360341)

  • 21. Biocontrol Methods for the Management of
    Wang SY; Zhang YJ; Chen X; Shi XC; Herrera-Balandrano DD; Liu FQ; Laborda P
    Phytopathology; 2024 Jul; 114(7):1447-1457. PubMed ID: 38669603
    [No Abstract]   [Full Text] [Related]  

  • 22. Host-Induced Gene Silencing of a
    McCaghey M; Shao D; Kurcezewski J; Lindstrom A; Ranjan A; Whitham SA; Conley SP; Williams B; Smith DL; Kabbage M
    Front Plant Sci; 2021; 12():677631. PubMed ID: 34354721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Postharvest sclerotinia rot control in carrot by the natural product hinokitiol and the potential mechanisms involved.
    Qiao Y; Zhang M; Cao Y; Mi Q; Liang S; Feng J; Wang Y
    Int J Food Microbiol; 2022 Dec; 383():109939. PubMed ID: 36166914
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pharmacological characteristics of the novel fungicide pyrisoxazole against Sclerotinia sclerotiorum.
    Duan Y; Li T; Xiao X; Wu J; Li S; Wang J; Zhou M
    Pestic Biochem Physiol; 2018 Jul; 149():61-66. PubMed ID: 30033017
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of the chitinase gene CmCH1 from Coniothyrium minitans renders enhanced resistance to Sclerotinia sclerotiorum in soybean.
    Yang X; Yang J; Li H; Niu L; Xing G; Zhang Y; Xu W; Zhao Q; Li Q; Dong Y
    Transgenic Res; 2020 Apr; 29(2):187-198. PubMed ID: 31970612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antifungal, Plant Growth-Promoting, and Genomic Properties of an Endophytic Actinobacterium
    Liu D; Yan R; Fu Y; Wang X; Zhang J; Xiang W
    Front Microbiol; 2019; 10():2077. PubMed ID: 31551997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Soybean (
    Webster RW; Roth MG; Reed H; Mueller B; Groves CL; McCaghey M; Chilvers MI; Mueller DS; Kabbage M; Smith DL
    Plant Dis; 2021 Aug; 105(8):2189-2195. PubMed ID: 33231521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The pathogenic development of Sclerotinia sclerotiorum in soybean requires specific host NADPH oxidases.
    Ranjan A; Jayaraman D; Grau C; Hill JH; Whitham SA; Ané JM; Smith DL; Kabbage M
    Mol Plant Pathol; 2018 Mar; 19(3):700-714. PubMed ID: 28378935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptome Profiling Reveals Molecular Players in Early Soybean-
    Wei W; Wu X; Blahut-Beatty L; Simmonds DH; Clough SJ
    Phytopathology; 2022 Aug; 112(8):1739-1752. PubMed ID: 35778800
    [No Abstract]   [Full Text] [Related]  

  • 30. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum.
    Chacón-Orozco JG; Bueno CJ; Shapiro-Ilan DI; Hazir S; Leite LG; Harakava R
    Sci Rep; 2020 Nov; 10(1):20649. PubMed ID: 33244079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Sclerotia and Apothecia of Sclerotinia sclerotiorum from Infected Soybean Seed and Its Control by Fungicide Seed Treatment.
    Mueller DS; Hartman GL; Pedersen WL
    Plant Dis; 1999 Dec; 83(12):1113-1115. PubMed ID: 30841133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Digital gene expression profiling of the transcriptional response to
    Liu J; Hu X; He H; Zhang X; Guo J; Bai J; Cheng Y
    Front Microbiol; 2022; 13():1025771. PubMed ID: 36406417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antifungal effects of 3-(2-pyridyl)methyl-2-(4-chlorphenyl) iminothiazolidine against Sclerotinia sclerotiorum.
    Zhang X; Xu J; Muhayimana S; Xiong H; Liu X; Huang Q
    Pest Manag Sci; 2020 Sep; 76(9):2978-2985. PubMed ID: 32246520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease.
    Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E
    J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comprehensive Sclerotinia Stem Rot Screening of Soybean Germplasm Requires Multiple Isolates of Sclerotinia sclerotiorum.
    Willbur JF; Ding S; Marks ME; Lucas H; Grau CR; Groves CL; Kabbage M; Smith DL
    Plant Dis; 2017 Feb; 101(2):344-353. PubMed ID: 30681926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antifungal Activity and Mechanism of Xenocoumacin 1, a Natural Product from
    Zhang S; Han Y; Wang L; Han J; Yan Z; Wang Y; Wang Y
    J Fungi (Basel); 2024 Feb; 10(3):. PubMed ID: 38535184
    [No Abstract]   [Full Text] [Related]  

  • 37. The relationship between features enabling SDHI fungicide binding to the Sc-Sdh complex and its inhibitory activity against Sclerotinia sclerotiorum.
    Gao Y; He L; Zhu J; Cheng J; Li B; Liu F; Mu W
    Pest Manag Sci; 2020 Aug; 76(8):2799-2808. PubMed ID: 32216079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination.
    Cheng Q; Hu C; Jia W; Cai M; Zhao Y; Tang Y; Yang D; Zhou Y; Sun X; Zhao X
    Ecotoxicol Environ Saf; 2019 Nov; 183():109503. PubMed ID: 31394376
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrate reductase is required for sclerotial development and virulence of
    Wei J; Yao C; Zhu Z; Gao Z; Yang G; Pan Y
    Front Plant Sci; 2023; 14():1096831. PubMed ID: 37342142
    [No Abstract]   [Full Text] [Related]  

  • 40. Small Cationic Cysteine-Rich Defensin-Derived Antifungal Peptide Controls White Mold in Soybean.
    Djami-Tchatchou AT; Tetorya M; Godwin J; Codjoe JM; Li H; Shah DM
    J Fungi (Basel); 2023 Aug; 9(9):. PubMed ID: 37754982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.