These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 35360359)

  • 1. Hormone analysis and candidate genes identification associated with seed size in
    Ji K; Song Q; Yu X; Tan C; Wang L; Chen L; Xiang X; Gong W; Yuan D
    R Soc Open Sci; 2022 Mar; 9(3):211138. PubMed ID: 35360359
    [No Abstract]   [Full Text] [Related]  

  • 2. Identification of miRNA-mRNA Regulatory Modules Involved in Lipid Metabolism and Seed Development in a Woody Oil Tree (
    Wu B; Ruan C; Shah AH; Li D; Li H; Ding J; Li J; Du W
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-Length Transcriptome from
    Gong W; Song Q; Ji K; Gong S; Wang L; Chen L; Zhang J; Yuan D
    J Agric Food Chem; 2020 Dec; 68(49):14670-14683. PubMed ID: 33249832
    [No Abstract]   [Full Text] [Related]  

  • 4. Transcriptome and Anatomical Comparisons Reveal the Effects of Methyl Jasmonate on the Seed Development of
    Song Q; Gong W; Yu X; Ji K; Jiang Y; Chang Y; Yuan D
    J Agric Food Chem; 2023 May; 71(17):6747-6762. PubMed ID: 37026572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F; Li Z; Zhou J; Gu Y; Tan X
    BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fatty acids and nutritional components of the seed oil from Wangmo red ball Camellia oleifera grown in the low-heat valley of Guizhou, China.
    Long L; Gao C; Qiu J; Yang L; Wei H; Zhou Y
    Sci Rep; 2022 Oct; 12(1):16554. PubMed ID: 36192507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative iTRAQ-based proteomic and transcriptomic analysis reveals the accumulation patterns of key metabolites associated with oil quality during seed ripening of Camellia oleifera.
    Ye Z; Yu J; Yan W; Zhang J; Yang D; Yao G; Liu Z; Wu Y; Hou X
    Hortic Res; 2021 Jul; 8(1):157. PubMed ID: 34193845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo transcriptome assembly of the cotyledon of Camellia oleifera for discovery of genes regulating seed germination.
    Long W; Yao X; Wang K; Sheng Y; Lv L
    BMC Plant Biol; 2022 May; 22(1):265. PubMed ID: 35643426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition.
    Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285
    [No Abstract]   [Full Text] [Related]  

  • 10. Maturity Grading and Identification of
    Zhu X; Shen D; Wang R; Zheng Y; Su S; Chen F
    Foods; 2022 Nov; 11(23):. PubMed ID: 36496609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene coexpression analysis reveals key pathways and hub genes related to late-acting self-incompatibility in
    Li C; Long Y; Lu M; Zhou J; Wang S; Xu Y; Tan X
    Front Plant Sci; 2022; 13():1065872. PubMed ID: 36762174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fruit economic characteristics and yields of 40 superior Camellia oleifera Abel plants in the low-hot valley area of Guizhou Province, China.
    Yang L; Gao C; Xie J; Qiu J; Deng Q; Zhou Y; Liao D; Deng C
    Sci Rep; 2022 Apr; 12(1):7068. PubMed ID: 35488002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global Transcriptome and Correlation Analysis Reveal Cultivar-Specific Molecular Signatures Associated with Fruit Development and Fatty Acid Determination in
    Peng S; Lu J; Zhang Z; Ma L; Liu C; Chen Y
    Int J Genomics; 2020; 2020():6162802. PubMed ID: 32953873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-Genome Identification and Analysis of Multiple Gene Families Reveal Candidate Genes for Theasaponin Biosynthesis in
    Yang L; Gu Y; Zhou J; Yuan P; Jiang N; Wu Z; Tan X
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742835
    [No Abstract]   [Full Text] [Related]  

  • 15. TMT-Based Quantitative Proteomic Analysis Reveals the Crucial Biological Pathways Involved in Self-Incompatibility Responses in
    He Y; Song Q; Wu Y; Ye S; Chen S; Chen H
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32183315
    [No Abstract]   [Full Text] [Related]  

  • 16. Applications of Chinese
    Quan W; Wang A; Gao C; Li C
    Front Chem; 2022; 10():921246. PubMed ID: 35685348
    [No Abstract]   [Full Text] [Related]  

  • 17. Leaf Transcriptome and Weight Gene Co-expression Network Analysis Uncovers Genes Associated with Photosynthetic Efficiency in Camellia oleifera.
    He Z; Liu C; Wang X; Wang R; Tian Y; Chen Y
    Biochem Genet; 2021 Apr; 59(2):398-421. PubMed ID: 33040171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera).
    Zeng Y; Tan X; Zhang L; Jiang N; Cao H
    PLoS One; 2014; 9(9):e107422. PubMed ID: 25215538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput sequencing of small RNAs reveals dynamic microRNAs expression of lipid metabolism during Camellia oleifera and C. meiocarpa seed natural drying.
    Feng JL; Yang ZJ; Chen SP; El-Kassaby YA; Chen H
    BMC Genomics; 2017 Jul; 18(1):546. PubMed ID: 28728593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative Metabolic and Transcriptomic Profiling in
    Chen M; Zhang Y; Du Z; Kong X; Zhu X
    Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.