BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 35360497)

  • 1. Crisis Ahead? Why Human-Robot Interaction User Studies May Have Replicability Problems and Directions for Improvement.
    Leichtmann B; Nitsch V; Mara M
    Front Robot AI; 2022; 9():838116. PubMed ID: 35360497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Replication concerns in sports and exercise science: a narrative review of selected methodological issues in the field.
    Mesquida C; Murphy J; Lakens D; Warne J
    R Soc Open Sci; 2022 Dec; 9(12):220946. PubMed ID: 36533197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drawing parallels in human-other interactions: a trans-disciplinary approach to developing human-robot interaction methodologies.
    Collins EC
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1771):20180433. PubMed ID: 30853002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RISE: an open-source architecture for interdisciplinary and reproducible human-robot interaction research.
    Groß A; Schütze C; Brandt M; Wrede B; Richter B
    Front Robot AI; 2023; 10():1245501. PubMed ID: 38130401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducibility in Human-Robot Interaction: Furthering the Science of HRI.
    Gunes H; Broz F; Crawford CS; der Pütten AR; Strait M; Riek L
    Curr Robot Rep; 2022; 3(4):281-292. PubMed ID: 36311257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From social brains to social robots: applying neurocognitive insights to human-robot interaction.
    Cross ES; Hortensius R; Wykowska A
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1771):20180024. PubMed ID: 30852997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multimodal Emotional Human-Robot Interaction Architecture for Social Robots Engaged in Bidirectional Communication.
    Hong A; Lunscher N; Hu T; Tsuboi Y; Zhang X; Franco Dos Reis Alves S; Nejat G; Benhabib B
    IEEE Trans Cybern; 2021 Dec; 51(12):5954-5968. PubMed ID: 32149676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving gesture-based interaction between an assistive bathing robot and older adults via user training on the gestural commands.
    Werner C; Kardaris N; Koutras P; Zlatintsi A; Maragos P; Bauer JM; Hauer K
    Arch Gerontol Geriatr; 2020; 87():103996. PubMed ID: 31855713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A meta-analysis of factors affecting trust in human-robot interaction.
    Hancock PA; Billings DR; Schaefer KE; Chen JY; de Visser EJ; Parasuraman R
    Hum Factors; 2011 Oct; 53(5):517-27. PubMed ID: 22046724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advancements in multimodal human-robot interaction.
    Su H; Qi W; Chen J; Yang C; Sandoval J; Laribi MA
    Front Neurorobot; 2023; 17():1084000. PubMed ID: 37250671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological data for affective computing in HRI with anthropomorphic service robots: the AFFECT-HRI data set.
    Heinisch JS; Kirchhoff J; Busch P; Wendt J; von Stryk O; David K
    Sci Data; 2024 Apr; 11(1):333. PubMed ID: 38575624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imagine how to behave: the influence of imagined contact on human-robot interaction.
    Wullenkord R; Eyssel F
    Philos Trans R Soc Lond B Biol Sci; 2019 Apr; 374(1771):20180038. PubMed ID: 30853004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating Strategies for Robot Persuasion in Social Human-Robot Interaction.
    Saunderson S; Nejat G
    IEEE Trans Cybern; 2022 Jan; 52(1):641-653. PubMed ID: 32452790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system.
    Mizanoor Rahman SM; Ikeura R
    Robotics Biomim; 2018; 5(1):7. PubMed ID: 30524934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward understanding social cues and signals in human-robot interaction: effects of robot gaze and proxemic behavior.
    Fiore SM; Wiltshire TJ; Lobato EJ; Jentsch FG; Huang WH; Axelrod B
    Front Psychol; 2013; 4():859. PubMed ID: 24348434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lessons Learned About Designing and Conducting Studies From HRI Experts.
    Fraune MR; Leite I; Karatas N; Amirova A; Legeleux A; Sandygulova A; Neerincx A; Dilip Tikas G; Gunes H; Mohan M; Abbasi NI; Shenoy S; Scassellati B; de Visser EJ; Komatsu T
    Front Robot AI; 2021; 8():772141. PubMed ID: 35155588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a conceptualisation and critique of everyday life in HRI.
    Zawieska K; Hannibal G
    Front Robot AI; 2023; 10():1212034. PubMed ID: 37779577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive Brain-Computer Interfaces for Enhanced Human-Robot Interaction.
    Alimardani M; Hiraki K
    Front Robot AI; 2020; 7():125. PubMed ID: 33501291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing the Strategic Messages Affecting Robot Trust Effect: The Dynamic of User- and Robot-Generated Content on Human-Robot Trust and Interaction Outcomes.
    Liang YJ; Lee SA
    Cyberpsychol Behav Soc Netw; 2016 Sep; 19(9):538-44. PubMed ID: 27585068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Behavioral Creativity of a Proactive Robot.
    Buyukgoz S; Pandey AK; Chamoux M; Chetouani M
    Front Robot AI; 2021; 8():694177. PubMed ID: 34901167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.