These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35360512)

  • 1. Keratoconus Classification with Convolutional Neural Networks Using Segmentation and Index Quantification of Eye Topography Images by Particle Swarm Optimisation.
    P S; G P R
    Biomed Res Int; 2022; 2022():8119685. PubMed ID: 35360512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated cornea diagnosis using deep convolutional neural networks based on cornea topography maps.
    Fassbind B; Langenbucher A; Streich A
    Sci Rep; 2023 Apr; 13(1):6566. PubMed ID: 37085580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Corneal Ectasia Using OCT Maps of Pachymetry and Posterior Surface Mean Curvature.
    Pavlatos E; Chen S; Chamberlain W; Huang D; Li Y
    J Refract Surg; 2022 Aug; 38(8):502-510. PubMed ID: 35946999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative comparison of corneal surface areas in keratoconus and normal eyes.
    Crahay FX; Debellemanière G; Tobalem S; Ghazal W; Moran S; Gatinel D
    Sci Rep; 2021 Mar; 11(1):6840. PubMed ID: 33767220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mean curvature mapping for detection of corneal shape abnormality.
    Tang M; Shekhar R; Huang D
    IEEE Trans Med Imaging; 2005 Mar; 24(3):424-8. PubMed ID: 15754992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keratoconus Screening Based on Deep Learning Approach of Corneal Topography.
    Kuo BI; Chang WY; Liao TS; Liu FY; Liu HY; Chu HS; Chen WL; Hu FR; Yen JY; Wang IJ
    Transl Vis Sci Technol; 2020 Sep; 9(2):53. PubMed ID: 33062398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Estimation of Corneal Topography, Pachymetry, and Curvature.
    Nasrin F; Iyer RV; Mathews SM
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2463-2473. PubMed ID: 29994760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KeratoDetect: Keratoconus Detection Algorithm Using Convolutional Neural Networks.
    Lavric A; Valentin P
    Comput Intell Neurosci; 2019; 2019():8162567. PubMed ID: 30809255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keratoconus disease classification with multimodel fusion and vision transformer: a pretrained model approach.
    Yaraghi S; Khatibi T
    BMJ Open Ophthalmol; 2024 Apr; 9(1):. PubMed ID: 38653536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automated Keratoconus Detection by 3D Corneal Images Reconstruction.
    Mahmoud HAH; Mengash HA
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Systematic Review of Subclinical Keratoconus and Forme Fruste Keratoconus.
    Henriquez MA; Hadid M; Izquierdo L
    J Refract Surg; 2020 Apr; 36(4):270-279. PubMed ID: 32267959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of three-dimensional optical coherence tomography and combining a rotating Scheimpflug camera with a Placido topography system for forme fruste keratoconus diagnosis.
    Fukuda S; Beheregaray S; Hoshi S; Yamanari M; Lim Y; Hiraoka T; Yasuno Y; Oshika T
    Br J Ophthalmol; 2013 Dec; 97(12):1554-9. PubMed ID: 24081501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Keratoconus Classifier for Smartphone-based Corneal Topographer.
    Gairola S; Joshi P; Balasubramaniam A; Murali K; Kwatra N; Jain M
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1875-1878. PubMed ID: 36086067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-aided diagnosis of keratoconus through VAE-augmented images using deep learning.
    Agharezaei Z; Firouzi R; Hassanzadeh S; Zarei-Ghanavati S; Bahaadinbeigy K; Golabpour A; Akbarzadeh R; Agharezaei L; Bakhshali MA; Sedaghat MR; Eslami S
    Sci Rep; 2023 Nov; 13(1):20586. PubMed ID: 37996439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retracted: Keratoconus Classification with Convolutional Neural Networks Using Segmentation and Index Quantification of Eye Topography Images by Particle Swarm Optimisation.
    International BR
    Biomed Res Int; 2024; 2024():9869382. PubMed ID: 38550176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal Topography Raw Data Classification Using a Convolutional Neural Network.
    Zéboulon P; Debellemanière G; Bouvet M; Gatinel D
    Am J Ophthalmol; 2020 Nov; 219():33-39. PubMed ID: 32533948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining Placido and Corneal Wavefront Data for the Detection of Forme Fruste Keratoconus.
    Saad A; Gatinel D
    J Refract Surg; 2016 Aug; 32(8):510-6. PubMed ID: 27505311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Coincident Thinning Index for Keratoconus Identification Using OCT Pachymetry and Epithelial Thickness Maps.
    Pavlatos E; Chen S; Yang Y; Wang Q; Huang D; Li Y
    J Refract Surg; 2020 Nov; 36(11):757-765. PubMed ID: 33170283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current keratoconus detection methods compared with a neural network approach.
    Smolek MK; Klyce SD
    Invest Ophthalmol Vis Sci; 1997 Oct; 38(11):2290-9. PubMed ID: 9344352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Corneal Dynamic and Tomographic Analysis in Normal, Forme Fruste Keratoconic, and Keratoconic Eyes.
    Wang YM; Chan TCY; Yu M; Jhanji V
    J Refract Surg; 2017 Sep; 33(9):632-638. PubMed ID: 28880339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.