These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 35360842)

  • 1. Knowledge Graphs for Indication Expansion: An Explainable Target-Disease Prediction Method.
    Gurbuz O; Alanis-Lobato G; Picart-Armada S; Sun M; Haslinger C; Lawless N; Fernandez-Albert F
    Front Genet; 2022; 13():814093. PubMed ID: 35360842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Explainable drug repurposing via path based knowledge graph completion.
    Jiménez A; Merino MJ; Parras J; Zazo S
    Sci Rep; 2024 Jul; 14(1):16587. PubMed ID: 39025897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioBLP: a modular framework for learning on multimodal biomedical knowledge graphs.
    Daza D; Alivanistos D; Mitra P; Pijnenburg T; Cochez M; Groth P
    J Biomed Semantics; 2023 Dec; 14(1):20. PubMed ID: 38066573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining biomedical knowledge graphs and text to improve predictions for drug-target interactions and drug-indications.
    Alshahrani M; Almansour A; Alkhaldi A; Thafar MA; Uludag M; Essack M; Hoehndorf R
    PeerJ; 2022; 10():e13061. PubMed ID: 35402106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches.
    Crichton G; Guo Y; Pyysalo S; Korhonen A
    BMC Bioinformatics; 2018 May; 19(1):176. PubMed ID: 29783926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task-driven knowledge graph filtering improves prioritizing drugs for repurposing.
    Ratajczak F; Joblin M; Ringsquandl M; Hildebrandt M
    BMC Bioinformatics; 2022 Mar; 23(1):84. PubMed ID: 35246025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein and pathway associations for understudied dark kinases using pattern-constrained knowledge graph embedding.
    Salcedo MV; Gravel N; Keshavarzi A; Huang LC; Kochut KJ; Kannan N
    PeerJ; 2023; 11():e15815. PubMed ID: 37868056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug repositioning or target repositioning: A structural perspective of drug-target-indication relationship for available repurposed drugs.
    Parisi D; Adasme MF; Sveshnikova A; Bolz SN; Moreau Y; Schroeder M
    Comput Struct Biotechnol J; 2020; 18():1043-1055. PubMed ID: 32419905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expediting knowledge acquisition by a web framework for Knowledge Graph Exploration and Visualization (KGEV): case studies on COVID-19 and Human Phenotype Ontology.
    Peng J; Xu D; Lee R; Xu S; Zhou Y; Wang K
    BMC Med Inform Decis Mak; 2022 Jun; 22(Suppl 2):147. PubMed ID: 35655307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing methods for drug-gene interaction prediction on the biomedical literature knowledge graph: performance versus explainability.
    Aisopos F; Paliouras G
    BMC Bioinformatics; 2023 Jun; 24(1):272. PubMed ID: 37391722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion.
    Lan Y; He S; Liu K; Zeng X; Liu S; Zhao J
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):335. PubMed ID: 34844576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drug-Drug Interaction Predictions via Knowledge Graph and Text Embedding: Instrument Validation Study.
    Wang M; Wang H; Liu X; Ma X; Wang B
    JMIR Med Inform; 2021 Jun; 9(6):e28277. PubMed ID: 34185011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. KGML-xDTD: a knowledge graph-based machine learning framework for drug treatment prediction and mechanism description.
    Ma C; Zhou Z; Liu H; Koslicki D
    Gigascience; 2022 Dec; 12():. PubMed ID: 37602759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomedical knowledge graph learning for drug repurposing by extending guilt-by-association to multiple layers.
    Bang D; Lim S; Lee S; Kim S
    Nat Commun; 2023 Jun; 14(1):3570. PubMed ID: 37322032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FRS: A simple knowledge graph embedding model for entity prediction.
    Wang LF; Lu XY; Jiang ZJ; Zhang ZK; Li RH; Zhao M; Chen DQ
    Math Biosci Eng; 2019 Aug; 16(6):7789-7807. PubMed ID: 31698640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensembles of knowledge graph embedding models improve predictions for drug discovery.
    Rivas-Barragan D; Domingo-Fernández D; Gadiya Y; Healey D
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36384050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alzheimer's Disease Knowledge Graph Enhances Knowledge Discovery and Disease Prediction.
    Yang Y; Yu K; Gao S; Yu S; Xiong D; Qin C; Chen H; Tang J; Tang N; Zhu H
    bioRxiv; 2024 Jul; ():. PubMed ID: 39005357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Literature-Based Knowledge Graph Embedding Method for Identifying Drug Repurposing Opportunities in Rare Diseases.
    Sosa DN; Derry A; Guo M; Wei E; Brinton C; Altman RB
    Pac Symp Biocomput; 2020; 25():463-474. PubMed ID: 31797619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of biomedical datasets relating to drug discovery: a knowledge graph perspective.
    Bonner S; Barrett IP; Ye C; Swiers R; Engkvist O; Bender A; Hoyt CT; Hamilton WL
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36151740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BioKG: a comprehensive, large-scale biomedical knowledge graph for AI-powered, data-driven biomedical research.
    Zhang Y; Sui X; Pan F; Yu K; Li K; Tian S; Erdengasileng A; Han Q; Wang W; Wang J; Wang J; Sun D; Chung H; Zhou J; Zhou E; Lee B; Zhang P; Qiu X; Zhao T; Zhang J
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.