BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35360867)

  • 1. Investigating the Functional Role of Hypothetical Proteins From an Antarctic Bacterium
    Ijaq J; Chandra D; Ray MK; Jagannadham MV
    Front Genet; 2022; 13():825269. PubMed ID: 35360867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance.
    da Costa WLO; Araújo CLA; Dias LM; Pereira LCS; Alves JTC; Araújo FA; Folador EL; Henriques I; Silva A; Folador ARC
    PLoS One; 2018; 13(6):e0198965. PubMed ID: 29940001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The proteome of the outer membrane vesicles of an Antarctic bacterium Pseudomonas syringae Lz4W.
    Kulkarni HM; Swamy ChV; Jagannadham MV
    Data Brief; 2015 Sep; 4():406-9. PubMed ID: 26306312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of proteins from membrane preparations by a combination of MALDI TOF-TOF and LC-coupled linear ion trap MS analysis of an Antarctic bacterium Pseudomonas syringae Lz4W, a strain with unsequenced genome.
    Jagannadham MV
    Electrophoresis; 2008 Nov; 29(21):4341-50. PubMed ID: 18985660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of membrane proteins helps Antarctic Pseudomonas syringae to acclimatize upon temperature variations.
    Jagannadham MV; Chowdhury C
    J Proteomics; 2012 Apr; 75(8):2488-99. PubMed ID: 22418587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Draft Genome Sequence of the Antarctic Psychrophilic Bacterium Pseudomonas syringae Strain Lz4W.
    Pandiyan A; Ray MK
    Genome Announc; 2013 Jun; 1(3):. PubMed ID: 23788547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of outer membrane proteins from an Antarctic bacterium Pseudomonas syringae Lz4W.
    Jagannadham MV; Abou-Eladab EF; Kulkarni HM
    Mol Cell Proteomics; 2011 Jun; 10(6):M110.004549. PubMed ID: 21447709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional Analysis of Conserved Hypothetical Proteins from the Antarctic Bacterium,
    Masnoddin M; Ling CMWV; Yusof NA
    Microorganisms; 2022 Aug; 10(8):. PubMed ID: 36014072
    [No Abstract]   [Full Text] [Related]  

  • 9. Identification of Novel Abiotic Stress Proteins in Triticum aestivum Through Functional Annotation of Hypothetical Proteins.
    Gupta S; Singh Y; Kumar H; Raj U; Rao AR; Varadwaj PK
    Interdiscip Sci; 2018 Mar; 10(1):205-220. PubMed ID: 27421996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20.
    Shahbaaz M; Hassan MI; Ahmad F
    PLoS One; 2013; 8(12):e84263. PubMed ID: 24391926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic and transcriptomic investigations on cold-responsive properties of the psychrophilic Antarctic bacterium Psychrobacter sp. PAMC 21119 at subzero temperatures.
    Koh HY; Park H; Lee JH; Han SJ; Sohn YC; Lee SG
    Environ Microbiol; 2017 Feb; 19(2):628-644. PubMed ID: 27750393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Annotation of Hypothetical Proteins related to Antibiotic Resistance in Pseudomonas Aeruginosa PA01.
    Reem A; Zhong ZH; Al-Shehari WA; Al-Shaebi F; Amran GA; Moeed YAG; Sami R; Khojah E; Askary AE
    Clin Lab; 2021 Aug; 67(8):. PubMed ID: 34383409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the functional role of hypothetical proteins from
    Thakur CJ; Saini S; Notra A; Chauhan B; Arya S; Gupta R; Thakur J; Kumar V
    Mol Biol Res Commun; 2020 Sep; 9(3):129-139. PubMed ID: 33313333
    [No Abstract]   [Full Text] [Related]  

  • 14. Functional Annotation and Curation of Hypothetical Proteins Present in A Newly Emerged Serotype 1c of
    Sen T; Verma NK
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32210046
    [No Abstract]   [Full Text] [Related]  

  • 15. Auxotrophy in natural isolate: minimal requirements for growth of the Antarctic psychrotrophic bacterium Pseudomonas syringae Lz4W.
    Sahu B; Ray MK
    J Basic Microbiol; 2008 Feb; 48(1):38-47. PubMed ID: 18247394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular characterization and functional analysis of outer membrane vesicles from the antarctic bacterium Pseudomonas syringae suggest a possible response to environmental conditions.
    Kulkarni HM; Swamy ChV; Jagannadham MV
    J Proteome Res; 2014 Mar; 13(3):1345-58. PubMed ID: 24437924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional annotation of Candida albicans hypothetical proteins: a bioinformatics approach.
    Tripathi D; Kapoor A; Bulbul ; Pankaj ; Kant R; Saluja D; Sharma M
    Arch Microbiol; 2024 Feb; 206(3):118. PubMed ID: 38393407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Questing functions and structures of hypothetical proteins from Campylobacter jejuni: a computer-aided approach.
    Gazi MA; Mahmud S; Fahim SM; Islam MR; Das S; Mahfuz M; Ahmed T
    Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32458979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico functional annotation of hypothetical proteins from the Bacillus paralicheniformis strain Bac84 reveals proteins with biotechnological potentials and adaptational functions to extreme environments.
    Rahman MA; Heme UH; Parvez MAK
    PLoS One; 2022; 17(10):e0276085. PubMed ID: 36228026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome Wide Re-Annotation of Caldicellulosiruptor saccharolyticus with New Insights into Genes Involved in Biomass Degradation and Hydrogen Production.
    Chowdhary N; Selvaraj A; KrishnaKumaar L; Kumar GR
    PLoS One; 2015; 10(7):e0133183. PubMed ID: 26196387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.