These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35361083)
1. Diagnosis of osteoarthritic changes, loss of cervical lordosis, and disc space narrowing on cervical radiographs with deep learning methods. Maraş Y; Tokdemir G; Üreten K; Atalar E; Duran S; Maraş H Jt Dis Relat Surg; 2022; 33(1):93-101. PubMed ID: 35361083 [TBL] [Abstract][Full Text] [Related]
2. Detection of hip osteoarthritis by using plain pelvic radiographs with deep learning methods. Üreten K; Arslan T; Gültekin KE; Demir AND; Özer HF; Bilgili Y Skeletal Radiol; 2020 Sep; 49(9):1369-1374. PubMed ID: 32248444 [TBL] [Abstract][Full Text] [Related]
3. The diagnosis of femoroacetabular impingement can be made on pelvis radiographs using deep learning methods. Atalar E; Üreten K; Kanatlı U; Çiçeklidağ M; Kaya İ; Vural A; Maraş Y Jt Dis Relat Surg; 2023 Apr; 34(2):298-304. PubMed ID: 37462632 [TBL] [Abstract][Full Text] [Related]
4. Deep learning methods in the diagnosis of sacroiliitis from plain pelvic radiographs. Üreten K; Maraş Y; Duran S; Gök K Mod Rheumatol; 2023 Jan; 33(1):202-206. PubMed ID: 34888699 [TBL] [Abstract][Full Text] [Related]
5. Automated Classification of Rheumatoid Arthritis, Osteoarthritis, and Normal Hand Radiographs with Deep Learning Methods. Üreten K; Maraş HH J Digit Imaging; 2022 Apr; 35(2):193-199. PubMed ID: 35018539 [TBL] [Abstract][Full Text] [Related]
6. Automated semantic labeling of pediatric musculoskeletal radiographs using deep learning. Yi PH; Kim TK; Wei J; Shin J; Hui FK; Sair HI; Hager GD; Fritz J Pediatr Radiol; 2019 Jul; 49(8):1066-1070. PubMed ID: 31041454 [TBL] [Abstract][Full Text] [Related]
7. Use of deep learning methods for hand fracture detection from plain hand radiographs. Üreten K; Sevinç HF; İğdeli U; Onay A; Maraş Y Ulus Travma Acil Cerrahi Derg; 2022 Jan; 28(2):196-201. PubMed ID: 35099027 [TBL] [Abstract][Full Text] [Related]
8. Faster RCNN-based detection of cervical spinal cord injury and disc degeneration. Ma S; Huang Y; Che X; Gu R J Appl Clin Med Phys; 2020 Sep; 21(9):235-243. PubMed ID: 32797664 [TBL] [Abstract][Full Text] [Related]
9. Cage subsidence does not, but cervical lordosis improvement does affect the long-term results of anterior cervical fusion with stand-alone cage for degenerative cervical disc disease: a retrospective study. Wu WJ; Jiang LS; Liang Y; Dai LY Eur Spine J; 2012 Jul; 21(7):1374-82. PubMed ID: 22205113 [TBL] [Abstract][Full Text] [Related]
10. Deep Learning Method for Automated Classification of Anteroposterior and Posteroanterior Chest Radiographs. Kim TK; Yi PH; Wei J; Shin JW; Hager G; Hui FK; Sair HI; Lin CT J Digit Imaging; 2019 Dec; 32(6):925-930. PubMed ID: 30972585 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Deep Learning Models for Cervical Vertebral Maturation Stage Classification on Lateral Cephalometric Radiographs. Seo H; Hwang J; Jeong T; Shin J J Clin Med; 2021 Aug; 10(16):. PubMed ID: 34441887 [TBL] [Abstract][Full Text] [Related]
12. Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative. Yeoh PSQ; Lai KW; Goh SL; Hasikin K; Wu X; Li P Front Bioeng Biotechnol; 2023; 11():1164655. PubMed ID: 37122858 [TBL] [Abstract][Full Text] [Related]
13. Deep Convolutional Neural Network-based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs. Sim Y; Chung MJ; Kotter E; Yune S; Kim M; Do S; Han K; Kim H; Yang S; Lee DJ; Choi BW Radiology; 2020 Jan; 294(1):199-209. PubMed ID: 31714194 [TBL] [Abstract][Full Text] [Related]
14. Sex determination from lateral cephalometric radiographs using an automated deep learning convolutional neural network. Khazaei M; Mollabashi V; Khotanlou H; Farhadian M Imaging Sci Dent; 2022 Sep; 52(3):239-244. PubMed ID: 36238705 [TBL] [Abstract][Full Text] [Related]
15. Stand-alone cervical polyetheretherketone (PEEK) cage (cervios) for single to two-level degenerative disc disease. Iampreechakul P; Srisawat C; Tirakotai W J Med Assoc Thai; 2011 Feb; 94(2):185-92. PubMed ID: 21534365 [TBL] [Abstract][Full Text] [Related]
16. Automated Grading of Lumbar Disc Degeneration Using a Push-Pull Regularization Network Based on MRI. Gao F; Liu S; Zhang X; Wang X; Zhang J J Magn Reson Imaging; 2021 Mar; 53(3):799-806. PubMed ID: 33094867 [TBL] [Abstract][Full Text] [Related]
17. Bone age assessment from lateral cephalograms using deep learning algorithms in the Indian population. Agarwal S; Agarwal S Indian J Dent Res; 2022; 33(4):402-407. PubMed ID: 37006005 [TBL] [Abstract][Full Text] [Related]
18. Predictability of severity of disc degeneration and disc protrusion using horizontal displacement of cervical dynamic radiographs: A retrospective comparison study with MRI. Kim CH; Hwang JM; Park JS; Han S; Park D Medicine (Baltimore); 2018 Jun; 97(25):e11098. PubMed ID: 29924003 [TBL] [Abstract][Full Text] [Related]
19. [Adjacent segment degeneration after lumbosacral fusion in spondylolisthesis: a retrospective radiological and clinical analysis]. Zencica P; Chaloupka R; Hladíková J; Krbec M Acta Chir Orthop Traumatol Cech; 2010 Apr; 77(2):124-30. PubMed ID: 20447355 [TBL] [Abstract][Full Text] [Related]
20. Diagnosing uterine cervical cancer on a single T2-weighted image: Comparison between deep learning versus radiologists. Urushibara A; Saida T; Mori K; Ishiguro T; Sakai M; Masuoka S; Satoh T; Masumoto T Eur J Radiol; 2021 Feb; 135():109471. PubMed ID: 33338759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]