These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35361167)

  • 1. Analysis of relationship between loading condition and cranial cracking pattern using a three-dimensional finite element model.
    Kiriyama Y; Sato Y; Muramatsu Y; Mano T; Tanaka K; Oshio K
    BMC Musculoskelet Disord; 2022 Mar; 23(1):310. PubMed ID: 35361167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Three-dimensional finite element analysis of the change of cracks in the cracked first mandibular molar under different loading conditions].
    Hou TZ; Zhu FY; Tao H; Wang SS
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2009 Apr; 27(2):126-9, 134. PubMed ID: 19472870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of failure in cancellous bone using extended finite element method.
    Salem M; Westover L; Adeeb S; Duke K
    Proc Inst Mech Eng H; 2020 Sep; 234(9):988-999. PubMed ID: 32605523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bending strength of tablets with a breaking line--Comparison of the results of an elastic and a "brittle cracking" finite element model with experimental findings.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2015 Nov; 495(1):485-499. PubMed ID: 26363109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validity and sensitivity of a human cranial finite element model: implications for comparative studies of biting performance.
    Toro-Ibacache V; Fitton LC; Fagan MJ; O'Higgins P
    J Anat; 2016 Jan; 228(1):70-84. PubMed ID: 26398104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can an Endplate-conformed Cervical Cage Provide a Better Biomechanical Environment than a Typical Non-conformed Cage?: A Finite Element Model and Cadaver Study.
    Zhang F; Xu HC; Yin B; Xia XL; Ma XS; Wang HL; Yin J; Shao MH; Lyu FZ; Jiang JY
    Orthop Surg; 2016 Aug; 8(3):367-76. PubMed ID: 27627721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study.
    Keyak JH; Sigurdsson S; Karlsdottir GS; Oskarsdottir D; Sigmarsdottir A; Kornak J; Harris TB; Sigurdsson G; Jonsson BY; Siggeirsdottir K; Eiriksdottir G; Gudnason V; Lang TF
    Bone; 2013 Nov; 57(1):18-29. PubMed ID: 23907032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of boundary and loading conditions on patient classification using finite element predicted risk of fracture.
    Altai Z; Qasim M; Li X; Viceconti M
    Clin Biomech (Bristol, Avon); 2019 Aug; 68():137-143. PubMed ID: 31202100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a finite element human head model partially validated with thirty five experimental cases.
    Mao H; Zhang L; Jiang B; Genthikatti VV; Jin X; Zhu F; Makwana R; Gill A; Jandir G; Singh A; Yang KH
    J Biomech Eng; 2013 Nov; 135(11):111002. PubMed ID: 24065136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specimen-specific vertebral fracture modeling: a feasibility study using the extended finite element method.
    Giambini H; Qin X; Dragomir-Daescu D; An KN; Nassr A
    Med Biol Eng Comput; 2016 Apr; 54(4):583-93. PubMed ID: 26239163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element model of the Jefferson fracture: comparison with a cadaver model.
    Bozkus H; Karakas A; Hanci M; Uzan M; Bozdag E; Sarioglu AC
    Eur Spine J; 2001 Jun; 10(3):257-63. PubMed ID: 11469739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of stress in cracked fibrous tissue specimens with varied crack location, loading, and orientation using finite element analysis.
    Peloquin JM; Elliott DM
    J Mech Behav Biomed Mater; 2016 Apr; 57():260-8. PubMed ID: 26741533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations?
    Schileo E; Balistreri L; Grassi L; Cristofolini L; Taddei F
    J Biomech; 2014 Nov; 47(14):3531-8. PubMed ID: 25261321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element method for analysis of stresses arising in the skull after external loading in cranio-orbital fractures.
    Wanyura H; Kowalczyk P; Bossak M; Samolczyk-Wanyura D; Stopa Z
    Neurol Neurochir Pol; 2012; 46(4):344-50. PubMed ID: 23023433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Finite Element Analysis of Impulsive Stress Waves Propagating from the Greater Trochanter of the Femur by a Sideways Fall.
    Sarai T; Tokumoto A
    Acta Med Okayama; 2015; 69(3):165-71. PubMed ID: 26101192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise loading history and femoral neck strength in a sideways fall: A three-dimensional finite element modeling study.
    Abe S; Narra N; Nikander R; Hyttinen J; Kouhia R; Sievänen H
    Bone; 2016 Nov; 92():9-17. PubMed ID: 27477004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress and strain propagation on infant skull from impact loads during falls: a finite element analysis.
    Burgos-Flórez FJ; Garzón-Alvarado DA
    Int Biomech; 2020 Dec; 7(1):19-34. PubMed ID: 33998390
    [No Abstract]   [Full Text] [Related]  

  • 19. Anterior supra-acetabular external fixation for tile C1 pelvic fractures: a digital anatomical study and a finite element analysis.
    Shan T; Anlin L; Mingming Y; Haitao Y; Anwei Z; Shichang G
    Eur J Trauma Emerg Surg; 2021 Dec; 47(6):1679-1686. PubMed ID: 33029659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional finite element modelling of a dog skull for the simulation of initial orthopaedic displacements.
    Verrue V; Dermaut L; Verhegghe B
    Eur J Orthod; 2001 Oct; 23(5):517-27. PubMed ID: 11668871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.