These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35361198)

  • 21. Defining new dental phenotypes using 3-D image analysis to enhance discrimination and insights into biological processes.
    Smith R; Zaitoun H; Coxon T; Karmo M; Kaur G; Townsend G; Harris EF; Brook A
    Arch Oral Biol; 2009 Dec; 54 Suppl 1(Suppl 1):S118-25. PubMed ID: 18644585
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of image processing program for yeast cell morphology.
    Ohtani M; Saka A; Sano F; Ohya Y; Morishita S
    J Bioinform Comput Biol; 2004 Jan; 1(4):695-709. PubMed ID: 15290760
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative analysis of colony morphology in yeast.
    Ruusuvuori P; Lin J; Scott AC; Tan Z; Sorsa S; Kallio A; Nykter M; Yli-Harja O; Shmulevich I; Dudley AM
    Biotechniques; 2014 Jan; 56(1):18-27. PubMed ID: 24447135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantification of cell, actin, and nuclear DNA morphology with high-throughput microscopy and CalMorph.
    Okada H; Ohnuki S; Ohya Y
    Cold Spring Harb Protoc; 2015 Apr; 2015(4):408-12. PubMed ID: 25834262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of Lipid Droplet Content in Fission and Budding Yeasts using Automated Image Processing.
    Princová J; Schätz M; Ťupa O; Převorovský M
    J Vis Exp; 2019 Jul; (149):. PubMed ID: 31380845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound images.
    Tao Z; Tagare HD; Beaty JD
    IEEE Trans Med Imaging; 2006 Nov; 25(11):1483-91. PubMed ID: 17117777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systematic data analysis pipeline for quantitative morphological cell phenotyping.
    Ghanegolmohammadi F; Eslami M; Ohya Y
    Comput Struct Biotechnol J; 2024 Dec; 23():2949-2962. PubMed ID: 39104709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimal methods for fitting probability distributions to propagule retention time in studies of zoochorous dispersal.
    Viana DS; Santamaría L; Figuerola J
    BMC Ecol; 2016 Feb; 16():3. PubMed ID: 26830496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphometric quantification of a pseudohyphae forming Saccharomyces cerevisiae strain using in situ microscopy and image analysis.
    Belini VL; Junior OM; Ceccato-Antonini SR; Suhr H; Wiedemann P
    J Microbiol Methods; 2021 Nov; 190():106338. PubMed ID: 34597736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parametric model fitting-based approach for retinal blood vessel caliber estimation in eye fundus images.
    Araújo T; Mendonça AM; Campilho A
    PLoS One; 2018; 13(4):e0194702. PubMed ID: 29668759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Machine Learning approach to discriminate Saccharomyces cerevisiae yeast cells using sophisticated image features.
    Tleis MS; Verbeek FJ
    J Integr Bioinform; 2015 Oct; 12(3):276. PubMed ID: 26673792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic device to acquire high-magnification microphotographs of yeast cells.
    Ohnuki S; Nogami S; Ohya Y
    Cell Div; 2009 Mar; 4():5. PubMed ID: 19317904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The degree distribution of networks: statistical model selection.
    Kelly WP; Ingram PJ; Stumpf MP
    Methods Mol Biol; 2012; 804():245-62. PubMed ID: 22144157
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PhenoM: a database of morphological phenotypes caused by mutation of essential genes in Saccharomyces cerevisiae.
    Jin K; Li J; Vizeacoumar FS; Li Z; Min R; Zamparo L; Vizeacoumar FJ; Datti A; Andrews B; Boone C; Zhang Z
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D687-94. PubMed ID: 22009677
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images.
    Haass-Koffler CL; Naeemuddin M; Bartlett SE
    J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Automated pipeline for anatomical phenotyping of mouse embryos using micro-CT.
    Wong MD; Maezawa Y; Lerch JP; Henkelman RM
    Development; 2014 Jun; 141(12):2533-41. PubMed ID: 24850858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A cell-level quality control workflow for high-throughput image analysis.
    Qiu M; Zhou B; Lo F; Cook S; Chyba J; Quackenbush D; Matzen J; Li Z; Mak PA; Chen K; Zhou Y
    BMC Bioinformatics; 2020 Jul; 21(1):280. PubMed ID: 32615917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-dimensional single-cell phenotyping reveals extensive haploinsufficiency.
    Ohnuki S; Ohya Y
    PLoS Biol; 2018 May; 16(5):e2005130. PubMed ID: 29768403
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.