BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35361422)

  • 1. Electric conductivity measurements employing 3D printed electrodes and cells.
    Vivaldi F; Sebechlebská T; Vaněčková E; Biagini D; Bonini A; Kolivoška V
    Anal Chim Acta; 2022 Apr; 1203():339600. PubMed ID: 35361422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printed Platform for Impedimetric Sensing of Liquids and Microfluidic Channels.
    Sebechlebská T; Vaněčková E; Choińska-Młynarczyk MK; Navrátil T; Poltorak L; Bonini A; Vivaldi F; Kolivoška V
    Anal Chem; 2022 Oct; 94(41):14426-14433. PubMed ID: 36200526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bioinspired Hierarchical Fast Transport Network Boosting Electrochemical Performance of 3D Printed Electrodes.
    Zhao B; Wu J; Liang Z; Liang W; Yang H; Li D; Qin W; Peng M; Sun Y; Jiang L
    Adv Sci (Weinh); 2022 Dec; 9(35):e2204751. PubMed ID: 36285676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroelectrochemical sensing of reaction intermediates and products in an affordable fully 3D printed device.
    Šikula M; Vaněčková E; Hromadová M; Kolivoška V
    Anal Chim Acta; 2023 Aug; 1267():341379. PubMed ID: 37257964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries.
    Fu K; Wang Y; Yan C; Yao Y; Chen Y; Dai J; Lacey S; Wang Y; Wan J; Li T; Wang Z; Xu Y; Hu L
    Adv Mater; 2016 Apr; 28(13):2587-94. PubMed ID: 26833897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic tongue and cyclic voltammetric sensors based on carbon nanotube/polylactic composites fabricated by fused deposition modelling 3D printing.
    Junpha J; Wisitsoraat A; Prathumwan R; Chaengsawang W; Khomungkhun K; Subannajui K
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111319. PubMed ID: 32919677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free counting of Escherichia coli cells in nanoliter droplets using 3D printed microfluidic devices with integrated contactless conductivity detection.
    Duarte LC; Figueredo F; Ribeiro LEB; Cortón E; Coltro WKT
    Anal Chim Acta; 2019 Sep; 1071():36-43. PubMed ID: 31128753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of 3D-printed disposable electrochemical sensors for glucose detection using a conductive filament modified with nickel microparticles.
    Rocha RG; Cardoso RM; Zambiazi PJ; Castro SVF; Ferraz TVB; Aparecido GO; Bonacin JA; Munoz RAA; Richter EM
    Anal Chim Acta; 2020 Oct; 1132():1-9. PubMed ID: 32980098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible 3D-Printed EEG Electrodes.
    Velcescu A; Lindley A; Cursio C; Krachunov S; Beach C; Brown CA; Jones AKP; Casson AJ
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three-dimensional printed electromembrane extraction device for capillary electrophoresis.
    Tan ML; Zhang M; Li F; Maya F; Breadmore MC
    J Chromatogr A; 2019 Jun; 1595():215-220. PubMed ID: 30853162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel 3D-printed Electrodes for Implantable Biopotential Monitoring.
    Ahmmed P; Reynolds J; Hamada S; Regmi P; Bozkurt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7120-7123. PubMed ID: 34892742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes.
    Ujjain SK; Bhatia R; Ahuja P; Attri P
    PLoS One; 2015; 10(7):e0131475. PubMed ID: 26153688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatile 3D-Printed Micro-Reference Electrodes for Aqueous and Non-Aqueous Solutions.
    Schuett FM; Zeller SJ; Eckl MJ; Matzik FM; Heubach MK; Geng T; Hermann JM; Uhl M; Kibler LA; Engstfeld AK; Jacob T
    Angew Chem Int Ed Engl; 2021 Oct; 60(42):22783-22790. PubMed ID: 34427031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using electrical impedance spectroscopy to detect water in planetary regoliths.
    Seshadri S; Chin KB; Buehler MG; Anderson RC
    Astrobiology; 2008 Aug; 8(4):781-92. PubMed ID: 18752458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-electrode platform for selective electrochemical sensing: 3D-printed insulating plastic is turned into a five-electrodes chip.
    Gonçalves DA; Estadulho GLD; Guima KE; Martins CA
    Talanta; 2022 Dec; 250():123705. PubMed ID: 35759830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D Printing Temperature Tailors Electrical and Electrochemical Properties through Changing Inner Distribution of Graphite/Polymer.
    Iffelsberger C; Jellett CW; Pumera M
    Small; 2021 Jun; 17(24):e2101233. PubMed ID: 33938128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AC electric field induced dipole-based on-chip 3D cell rotation.
    Benhal P; Chase JG; Gaynor P; Oback B; Wang W
    Lab Chip; 2014 Aug; 14(15):2717-27. PubMed ID: 24933556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of filament aging and conductive additive in 3D printed sensors.
    Kalinke C; de Oliveira PR; Neumsteir NV; Henriques BF; de Oliveira Aparecido G; Loureiro HC; Janegitz BC; Bonacin JA
    Anal Chim Acta; 2022 Jan; 1191():339228. PubMed ID: 35033250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.