These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35361642)
1. Predicting the impact of climate change on the re-emergence of malaria cases in China using LSTMSeq2Seq deep learning model: a modelling and prediction analysis study. Kamana E; Zhao J; Bai D BMJ Open; 2022 Mar; 12(3):e053922. PubMed ID: 35361642 [TBL] [Abstract][Full Text] [Related]
2. Deep learning hybrid model for analyzing and predicting the impact of imported malaria cases from Africa on the rise of Plasmodium falciparum in China before and during the COVID-19 pandemic. Kamana E; Zhao J PLoS One; 2023; 18(12):e0287702. PubMed ID: 38055693 [TBL] [Abstract][Full Text] [Related]
3. Synergies between environmental degradation and climate variation on malaria re-emergence in southern Venezuela: a spatiotemporal modelling study. Fletcher IK; Grillet ME; Moreno JE; Drakeley C; Hernández-Villena J; Jones KE; Lowe R Lancet Planet Health; 2022 Sep; 6(9):e739-e748. PubMed ID: 36087604 [TBL] [Abstract][Full Text] [Related]
4. A novel model for malaria prediction based on ensemble algorithms. Wang M; Wang H; Wang J; Liu H; Lu R; Duan T; Gong X; Feng S; Liu Y; Cui Z; Li C; Ma J PLoS One; 2019; 14(12):e0226910. PubMed ID: 31877185 [TBL] [Abstract][Full Text] [Related]
5. The weekly associations between climatic factors and Plasmodium vivax and Plasmodium falciparum malaria in China, 2005-2014. Hundessa S; Williams G; Li S; Guo J; Zhang W; Guo Y Trans R Soc Trop Med Hyg; 2017 May; 111(5):211-219. PubMed ID: 28957472 [TBL] [Abstract][Full Text] [Related]
6. Deep learning models for hepatitis E incidence prediction leveraging meteorological factors. Feng Y; Cui X; Lv J; Yan B; Meng X; Zhang L; Guo Y PLoS One; 2023; 18(3):e0282928. PubMed ID: 36913401 [TBL] [Abstract][Full Text] [Related]
7. The research of ARIMA, GM(1,1), and LSTM models for prediction of TB cases in China. Zhao D; Zhang H; Cao Q; Wang Z; He S; Zhou M; Zhang R PLoS One; 2022; 17(2):e0262734. PubMed ID: 35196309 [TBL] [Abstract][Full Text] [Related]
8. The increasing importance of Plasmodium ovale and Plasmodium malariae in a malaria elimination setting: an observational study of imported cases in Jiangsu Province, China, 2011-2014. Cao Y; Wang W; Liu Y; Cotter C; Zhou H; Zhu G; Tang J; Tang F; Lu F; Xu S; Gu Y; Zhang C; Li J; Cao J Malar J; 2016 Sep; 15(1):459. PubMed ID: 27604629 [TBL] [Abstract][Full Text] [Related]
9. Geographical, meteorological and vectorial factors related to malaria re-emergence in Huang-Huai River of central China. Zhou SS; Huang F; Wang JJ; Zhang SS; Su YP; Tang LH Malar J; 2010 Nov; 9():337. PubMed ID: 21092326 [TBL] [Abstract][Full Text] [Related]
10. Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand. Kiang R; Adimi F; Soika V; Nigro J; Singhasivanon P; Sirichaisinthop J; Leemingsawat S; Apiwathnasorn C; Looareesuwan S Geospat Health; 2006 Nov; 1(1):71-84. PubMed ID: 18686233 [TBL] [Abstract][Full Text] [Related]
11. Monthly climate prediction using deep convolutional neural network and long short-term memory. Guo Q; He Z; Wang Z Sci Rep; 2024 Jul; 14(1):17748. PubMed ID: 39085577 [TBL] [Abstract][Full Text] [Related]
12. Deep-Learning Model for Influenza Prediction From Multisource Heterogeneous Data in a Megacity: Model Development and Evaluation. Yang L; Li G; Yang J; Zhang T; Du J; Liu T; Zhang X; Han X; Li W; Ma L; Feng L; Yang W J Med Internet Res; 2023 Feb; 25():e44238. PubMed ID: 36780207 [TBL] [Abstract][Full Text] [Related]
13. Utilizing a novel high-resolution malaria dataset for climate-informed predictions with a deep learning transformer model. Pillay MT; Minakawa N; Kim Y; Kgalane N; Ratnam JV; Behera SK; Hashizume M; Sweijd N Sci Rep; 2023 Dec; 13(1):23091. PubMed ID: 38155182 [TBL] [Abstract][Full Text] [Related]
14. Deep learning models for forecasting dengue fever based on climate data in Vietnam. Nguyen VH; Tuyet-Hanh TT; Mulhall J; Minh HV; Duong TQ; Chien NV; Nhung NTT; Lan VH; Minh HB; Cuong D; Bich NN; Quyen NH; Linh TNQ; Tho NT; Nghia ND; Anh LVQ; Phan DTM; Hung NQV; Son MT PLoS Negl Trop Dis; 2022 Jun; 16(6):e0010509. PubMed ID: 35696432 [TBL] [Abstract][Full Text] [Related]
15. Model variations in predicting incidence of Plasmodium falciparum malaria using 1998-2007 morbidity and meteorological data from south Ethiopia. Loha E; Lindtjørn B Malar J; 2010 Jun; 9():166. PubMed ID: 20553590 [TBL] [Abstract][Full Text] [Related]
16. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan. Wangdi K; Singhasivanon P; Silawan T; Lawpoolsri S; White NJ; Kaewkungwal J Malar J; 2010 Sep; 9():251. PubMed ID: 20813066 [TBL] [Abstract][Full Text] [Related]
17. Development of an empirical model to predict malaria outbreaks based on monthly case reports and climate variables in Hefei, China, 1990-2011. Zhai JX; Lu Q; Hu WB; Tong SL; Wang B; Yang FT; Xu ZW; Xun SP; Shen XH Acta Trop; 2018 Feb; 178():148-154. PubMed ID: 29138004 [TBL] [Abstract][Full Text] [Related]
18. Perceptions of malaria control and prevention in an era of climate change: a cross-sectional survey among CDC staff in China. Tong MX; Hansen A; Hanson-Easey S; Cameron S; Xiang J; Liu Q; Liu X; Sun Y; Weinstein P; Han GS; Williams C; Bi P Malar J; 2017 Mar; 16(1):136. PubMed ID: 28359315 [TBL] [Abstract][Full Text] [Related]
19. Deep learning time series prediction models in surveillance data of hepatitis incidence in China. Xia Z; Qin L; Ning Z; Zhang X PLoS One; 2022; 17(4):e0265660. PubMed ID: 35417459 [TBL] [Abstract][Full Text] [Related]
20. [Current malaria situation in the Republic of Kazakhstan]. Bismil'din FB; Shapieva ZhZh; Anpilova EN Med Parazitol (Mosk); 2001; (1):24-33. PubMed ID: 11548308 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]