These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 35361854)

  • 21. Personalized Human Activity Recognition using Wearables: A Manifold Learning-based Knowledge Transfer.
    Saeedi R; Sasani K; Norgaard S; Gebremedhin AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1193-1196. PubMed ID: 30440604
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wearable Sensors Reveal Menses-Driven Changes in Physiology and Enable Prediction of the Fertile Window: Observational Study.
    Goodale BM; Shilaih M; Falco L; Dammeier F; Hamvas G; Leeners B
    J Med Internet Res; 2019 Apr; 21(4):e13404. PubMed ID: 30998226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors.
    Wang G; Li Q; Wang L; Wang W; Wu M; Liu T
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29912174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research on the Human Motion Recognition Method Based on Wearable.
    Wang Z; Jin X; Huang Y; Wang Y
    Biosensors (Basel); 2024 Jul; 14(7):. PubMed ID: 39056613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy of Samsung Gear S Smartwatch for Activity Recognition: Validation Study.
    Davoudi A; Wanigatunga AA; Kheirkhahan M; Corbett DB; Mendoza T; Battula M; Ranka S; Fillingim RB; Manini TM; Rashidi P
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11270. PubMed ID: 30724739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Different Sets of Features for Human Activity Recognition by Wearable Sensors.
    Rosati S; Balestra G; Knaflitz M
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leveraging Wearable Sensors for Human Daily Activity Recognition with Stacked Denoising Autoencoders.
    Ni Q; Fan Z; Zhang L; Nugent CD; Cleland I; Zhang Y; Zhou N
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911780
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A machine learning approach for semi-automatic assessment of IADL dependence in older adults with wearable sensors.
    Garcia-Moreno FM; Bermudez-Edo M; Rodríguez-García E; Pérez-Mármol JM; Garrido JL; Rodríguez-Fórtiz MJ
    Int J Med Inform; 2022 Jan; 157():104625. PubMed ID: 34763192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wearable Sensor-Based Human Activity Recognition with Transformer Model.
    Dirgová Luptáková I; Kubovčík M; Pospíchal J
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271058
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Human Activity Recognition Using Wearable Sensors via a Hybrid Feature Selection Method.
    Fan C; Gao F
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wearable Sensors for Activity Recognition in Ultimate Frisbee Using Convolutional Neural Networks and Transfer Learning.
    Link J; Perst T; Stoeve M; Eskofier BM
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wearable Sensor-Based Human Activity Recognition in the Smart Healthcare System.
    Serpush F; Menhaj MB; Masoumi B; Karasfi B
    Comput Intell Neurosci; 2022; 2022():1391906. PubMed ID: 35251142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of machine learning techniques for the identification of human activities from inertial sensors available in a mobile device after the application of data imputation techniques.
    Pires IM; Hussain F; Marques G; Garcia NM
    Comput Biol Med; 2021 Aug; 135():104638. PubMed ID: 34256257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visualizing Inertial Data For Wearable Sensor Based Daily Life Activity Recognition Using Convolutional Neural Network
    Huynh-The T; Hua CH; Kim DS
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2478-2481. PubMed ID: 31946400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative Analysis of Mother Wavelet Function Selection for Wearable Sensors-Based Human Activity Recognition.
    Nematallah H; Rajan S
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Data Preprocessing Approaches for Applying Deep Learning to Human Activity Recognition in the Context of Industry 4.0.
    Zheng X; Wang M; Ordieres-Meré J
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29970873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards Learning Discrete Representations via Self-Supervision for Wearables-Based Human Activity Recognition.
    Haresamudram H; Essa I; Plötz T
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Empirical Study and Improvement on Deep Transfer Learning for Human Activity Recognition.
    Ding R; Li X; Nie L; Li J; Si X; Chu D; Liu G; Zhan D
    Sensors (Basel); 2018 Dec; 19(1):. PubMed ID: 30586875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recognition and Repetition Counting for ComplexPhysical Exercises with Deep Learning.
    Soro A; Brunner G; Tanner S; Wattenhofer R
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30744158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Unobtrusive Human Activity Recognition System Using Low Resolution Thermal Sensors, Machine and Deep Learning.
    Rezaei A; Stevens MC; Argha A; Mascheroni A; Puiatti A; Lovell NH
    IEEE Trans Biomed Eng; 2023 Jan; 70(1):115-124. PubMed ID: 35759592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.