These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 35361854)

  • 41. Measuring Biomechanical Risk in Lifting Load Tasks Through Wearable System and Machine-Learning Approach.
    Conforti I; Mileti I; Del Prete Z; Palermo E
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168844
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review.
    Jourdan T; Debs N; Frindel C
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective Ensemble Based on Extreme Learning Machine for Sensor-Based Human Activity Recognition.
    Tian Y; Zhang J; Chen L; Geng Y; Wang X
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398938
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Novel Active Learning Framework for Cross-Subject Human Activity Recognition from Surface Electromyography.
    Ding Z; Hu T; Li Y; Li L; Li Q; Jin P; Yi C
    Sensors (Basel); 2024 Sep; 24(18):. PubMed ID: 39338694
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automated classification of hand gestures using a wristband and machine learning for possible application in pill intake monitoring.
    Moccia S; Solbiati S; Khornegah M; Bossi FF; Caiani EG
    Comput Methods Programs Biomed; 2022 Jun; 219():106753. PubMed ID: 35338885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Track My Health: An IoT Approach for Data Acquisition and Activity Recognition.
    Botilias G; Papoutsis A; Karvelis P; Stylios C
    Stud Health Technol Inform; 2020 Sep; 273():266-271. PubMed ID: 33087625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physical Workload Tracking Using Human Activity Recognition with Wearable Devices.
    Manjarres J; Narvaez P; Gasser K; Percybrooks W; Pardo M
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31861639
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Racquet Sports Recognition Using a Hybrid Clustering Model Learned from Integrated Wearable Sensor.
    Xia K; Wang H; Xu M; Li Z; He S; Tang Y
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Experimental Analysis of Artificial Neural Networks Performance for Physical Activity Recognition Using Belt and Wristband Devices.
    Qi J; Yang Y; Peng X; Newcombe L; Simpson A; Yang P
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2492-2495. PubMed ID: 31946403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Measuring Activities of Daily Living in Stroke Patients with Motion Machine Learning Algorithms: A Pilot Study.
    Chen PW; Baune NA; Zwir I; Wang J; Swamidass V; Wong AWK
    Int J Environ Res Public Health; 2021 Feb; 18(4):. PubMed ID: 33572116
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Lean and Performant Hierarchical Model for Human Activity Recognition Using Body-Mounted Sensors.
    Debache I; Jeantet L; Chevallier D; Bergouignan A; Sueur C
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32486068
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Development and validation of smartwatch-based activity recognition models for rigging crew workers on cable logging operations.
    Zimbelman EG; Keefe RF
    PLoS One; 2021; 16(5):e0250624. PubMed ID: 33979355
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Seizure detection using wearable sensors and machine learning: Setting a benchmark.
    Tang J; El Atrache R; Yu S; Asif U; Jackson M; Roy S; Mirmomeni M; Cantley S; Sheehan T; Schubach S; Ufongene C; Vieluf S; Meisel C; Harrer S; Loddenkemper T
    Epilepsia; 2021 Aug; 62(8):1807-1819. PubMed ID: 34268728
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Empowering Participatory Research in Urban Health: Wearable Biometric and Environmental Sensors for Activity Recognition.
    Novak R; Robinson JA; Kanduč T; Sarigiannis D; Džeroski S; Kocman D
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139735
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Framework for Maternal Physical Activities and Health Monitoring Using Wearable Sensors.
    Ullah F; Iqbal A; Iqbal S; Kwak D; Anwar H; Khan A; Ullah R; Siddique H; Kwak KS
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372186
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extracting aerobic system dynamics during unsupervised activities of daily living using wearable sensor machine learning models.
    Beltrame T; Amelard R; Wong A; Hughson RL
    J Appl Physiol (1985); 2018 Feb; 124(2):473-481. PubMed ID: 28596271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. HarMI: Human Activity Recognition Via Multi-Modality Incremental Learning.
    Zhang X; Yu H; Yang Y; Gu J; Li Y; Zhuang F; Yu D; Ren Z
    IEEE J Biomed Health Inform; 2022 Mar; 26(3):939-951. PubMed ID: 34061754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Intelligent Non-Invasive Real-Time Human Activity Recognition System for Next-Generation Healthcare.
    Taylor W; Shah SA; Dashtipour K; Zahid A; Abbasi QH; Imran MA
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32384716
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.
    Yurtman A; Barshan B
    Sensors (Basel); 2017 Aug; 17(8):. PubMed ID: 28792481
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Feature Representation and Data Augmentation for Human Activity Classification Based on Wearable IMU Sensor Data Using a Deep LSTM Neural Network.
    Steven Eyobu O; Han DS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30200377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.