BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

539 related articles for article (PubMed ID: 35362172)

  • 1. Limited parameter denoising for low-dose X-ray computed tomography using deep reinforcement learning.
    Patwari M; Gutjahr R; Raupach R; Maier A
    Med Phys; 2022 Jul; 49(7):4540-4553. PubMed ID: 35362172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
    Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L
    Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network.
    Yang S; Pu Q; Lei C; Zhang Q; Jeon S; Yang X
    Med Phys; 2023 Jun; 50(6):3597-3611. PubMed ID: 36542402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unsupervised low-dose CT denoising using bidirectional contrastive network.
    Zhang Y; Zhang R; Cao R; Xu F; Jiang F; Meng J; Ma F; Guo Y; Liu J
    Comput Methods Programs Biomed; 2024 Jun; 251():108206. PubMed ID: 38723435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HCformer: Hybrid CNN-Transformer for LDCT Image Denoising.
    Yuan J; Zhou F; Guo Z; Li X; Yu H
    J Digit Imaging; 2023 Oct; 36(5):2290-2305. PubMed ID: 37386333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel denoising method for CT images based on U-net and multi-attention.
    Zhang J; Niu Y; Shangguan Z; Gong W; Cheng Y
    Comput Biol Med; 2023 Jan; 152():106387. PubMed ID: 36495750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise Conscious Training of Non Local Neural Network Powered by Self Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising.
    Bera S; Biswas PK
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3663-3673. PubMed ID: 34224348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An unsupervised two-step training framework for low-dose computed tomography denoising.
    Kim W; Lee J; Choi JH
    Med Phys; 2024 Feb; 51(2):1127-1144. PubMed ID: 37432026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-dose CT denoising using a Progressive Wasserstein generative adversarial network.
    Wang G; Hu X
    Comput Biol Med; 2021 Aug; 135():104625. PubMed ID: 34246157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct estimation of the noise power spectrum from patient data to generate synthesized CT noise for denoising network training.
    Han M; Baek J
    Med Phys; 2024 Mar; 51(3):1637-1652. PubMed ID: 38289987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep convolutional dictionary learning network for sparse view CT reconstruction with a group sparse prior.
    Kang Y; Liu J; Wu F; Wang K; Qiang J; Hu D; Zhang Y
    Comput Methods Programs Biomed; 2024 Feb; 244():108010. PubMed ID: 38199137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography.
    Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H
    Vis Comput Ind Biomed Art; 2021 Jul; 4(1):21. PubMed ID: 34304321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralow-parameter denoising: Trainable bilateral filter layers in computed tomography.
    Wagner F; Thies M; Gu M; Huang Y; Pechmann S; Patwari M; Ploner S; Aust O; Uderhardt S; Schett G; Christiansen S; Maier A
    Med Phys; 2022 Aug; 49(8):5107-5120. PubMed ID: 35583171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.