These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 35362207)
21. A role of peptidoglycan recognition protein in mediating insecticide detoxification in Glyphodes pyloalis. Jiang DL; Ding JH; Liu ZX; Shao ZM; Liang XH; Wang J; Wu FA; Sheng S Arch Insect Biochem Physiol; 2021 Nov; 108(3):e21842. PubMed ID: 34499777 [TBL] [Abstract][Full Text] [Related]
22. Fatty acid desaturase 3 (PsFAD3) from Paeonia suffruticosa reveals high α-linolenic acid accumulation. Yin DD; Xu WZ; Shu QY; Li SS; Wu Q; Feng CY; Gu ZY; Wang LS Plant Sci; 2018 Sep; 274():212-222. PubMed ID: 30080606 [TBL] [Abstract][Full Text] [Related]
23. Identification and analysis of the FAD gene family in walnuts (Juglans regia L.) based on transcriptome data. Liu K; Zhao S; Wang S; Wang H; Zhang Z BMC Genomics; 2020 Apr; 21(1):299. PubMed ID: 32293267 [TBL] [Abstract][Full Text] [Related]
24. Toxicity and deleterious effects of Artemisia annua essential oil extracts on mulberry pyralid (Glyphodes pyloalis). Oftadeh M; Sendi JJ; Ebadollahi A Pestic Biochem Physiol; 2020 Nov; 170():104702. PubMed ID: 32980062 [TBL] [Abstract][Full Text] [Related]
25. Comparative and functional analysis of desaturase FADS1 (∆5) and FADS2 (∆6) orthologues of marine organisms. Rivera-Pérez C; Valenzuela-Quiñonez F; Caraveo-Patiño J Comp Biochem Physiol Part D Genomics Proteomics; 2020 Sep; 35():100704. PubMed ID: 32554222 [TBL] [Abstract][Full Text] [Related]
26. Comparative transcriptome profiling reveals candidate genes related to insecticide resistance of Su H; Gao Y; Liu Y; Li X; Liang Y; Dai X; Xu Y; Zhou Y; Wang H Bull Entomol Res; 2020 Feb; 110(1):57-67. PubMed ID: 31217039 [TBL] [Abstract][Full Text] [Related]
27. Selection of mutants with high linolenic acid contents and characterization of fatty acid desaturase 2 and 3 genes during seed development in soybean (Glycine max). Hong MJ; Jang YE; Kim DG; Kim JM; Lee MK; Kim JB; Eom SH; Ha BK; Lyu JI; Kwon SJ J Sci Food Agric; 2019 Sep; 99(12):5384-5391. PubMed ID: 31077382 [TBL] [Abstract][Full Text] [Related]
28. Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit. Hernández ML; Sicardo MD; Martínez-Rivas JM Plant Cell Physiol; 2016 Jan; 57(1):138-51. PubMed ID: 26514651 [TBL] [Abstract][Full Text] [Related]
29. Mulberry Protection through Flowering-Stage Essential Oil of Oftadeh M; Sendi JJ; Ebadollahi A; Setzer WN; Krutmuang P Foods; 2021 Jan; 10(2):. PubMed ID: 33498594 [TBL] [Abstract][Full Text] [Related]
30. Lipid Dynamics, Identification, and Expression Patterns of Fatty Acid Synthase Genes in an Endoparasitoid, Wang J; Shen LW; Xing XR; Xie YQ; Li YJ; Liu ZX; Wang J; Wu FA; Sheng S Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872177 [TBL] [Abstract][Full Text] [Related]
31. Molecular cloning and functional characterization of fatty acyl desaturase and elongase cDNAs involved in the production of eicosapentaenoic and docosahexaenoic acids from alpha-linolenic acid in Atlantic salmon (Salmo salar). Hastings N; Agaba MK; Tocher DR; Zheng X; Dickson CA; Dick JR; Teale AJ Mar Biotechnol (NY); 2004; 6(5):463-74. PubMed ID: 15549653 [TBL] [Abstract][Full Text] [Related]
32. Enhancement of α-linolenic acid content in transgenic tobacco seeds by targeting a plastidial ω-3 fatty acid desaturase (fad7) gene of Sesamum indicum to ER. Bhunia RK; Chakraborty A; Kaur R; Maiti MK; Sen SK Plant Cell Rep; 2016 Jan; 35(1):213-26. PubMed ID: 26521211 [TBL] [Abstract][Full Text] [Related]
33. Terminal fatty-acyl-CoA desaturase involved in sex pheromone biosynthesis in the winter moth (Operophtera brumata). Ding BJ; Liénard MA; Wang HL; Zhao CH; Löfstedt C Insect Biochem Mol Biol; 2011 Sep; 41(9):715-22. PubMed ID: 21651981 [TBL] [Abstract][Full Text] [Related]
34. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa. Na G; Mu X; Grabowski P; Schmutz J; Lu C Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453 [TBL] [Abstract][Full Text] [Related]
35. Low-linoleic acid diet and oestrogen enhance the conversion of α-linolenic acid into DHA through modification of conversion enzymes and transcription factors. Kim D; Choi JE; Park Y Br J Nutr; 2019 Jan; 121(2):137-145. PubMed ID: 30507367 [TBL] [Abstract][Full Text] [Related]
36. Differential transcriptional activity of SAD, FAD2 and FAD3 desaturase genes in developing seeds of linseed contributes to varietal variation in α-linolenic acid content. Rajwade AV; Kadoo NY; Borikar SP; Harsulkar AM; Ghorpade PB; Gupta VS Phytochemistry; 2014 Feb; 98():41-53. PubMed ID: 24380374 [TBL] [Abstract][Full Text] [Related]
37. Identification and characterization of a novel bifunctional Δ(12)/Δ(15)-fatty acid desaturase gene from Rhodosporidium kratochvilovae. Cui J; He S; Ji X; Lin L; Wei Y; Zhang Q Biotechnol Lett; 2016 Jul; 38(7):1155-64. PubMed ID: 27032802 [TBL] [Abstract][Full Text] [Related]
38. [Progress on molecular biology of delta6-fatty acid desaturases]. Zhang Q; Li MC; Sun HY; Sun Y; Ma HT; Xing LJ Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):319-24. PubMed ID: 15971598 [TBL] [Abstract][Full Text] [Related]
39. Modeling Temperature-Dependent Development of Glyphodes pyloalis (Lepidoptera: Pyralidae). Moallem Z; Karimi-Malati A; Sahragard A; Zibaee A J Insect Sci; 2017 Jan; 17(1):. PubMed ID: 28423429 [TBL] [Abstract][Full Text] [Related]