These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 35362270)

  • 21. Systematic Development Strategy for Smart Devices Based on Shape-Memory Polymers.
    Díaz Lantada A
    Polymers (Basel); 2017 Oct; 9(10):. PubMed ID: 30965799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface Adaptable and Adhesion Controllable Dry Adhesive with Shape Memory Polymer.
    Lee SH; Song HW; Park HJ; Kwak MK
    Macromol Rapid Commun; 2022 Apr; 43(8):e2200012. PubMed ID: 35132723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supramolecular shape memory hydrogels: a new bridge between stimuli-responsive polymers and supramolecular chemistry.
    Lu W; Le X; Zhang J; Huang Y; Chen T
    Chem Soc Rev; 2017 Mar; 46(5):1284-1294. PubMed ID: 28138679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shape memory polymers and their nanocomposites: a review of science and technology of new multifunctional materials.
    Gunes SI; Jana SC
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1616-37. PubMed ID: 18572561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous Shape Memory Polymers.
    Hearon K; Singhal P; Horn J; Small W; Olsovsky C; Maitland KC; Wilson TS; Maitland DJ
    Polym Rev (Phila Pa); 2013 Feb; 53(1):41-75. PubMed ID: 23646038
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimuli-Responsive Shape Changing Commodity Polymer Composites and Bilayers.
    Verpaalen RCP; Engels T; Schenning APHJ; Debije MG
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):38829-38844. PubMed ID: 32805900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smart and hybrid materials: perspectives for their use in textile structures for better health care.
    Carosio S; Monero A
    Stud Health Technol Inform; 2004; 108():335-43. PubMed ID: 15718664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shrinking Devices: Shape-Memory Polymer Fabrication of Micro-and Nanostructured Electrodes.
    González-Martínez E; Moran-Mirabal J
    Chemphyschem; 2024 Feb; 25(4):e202300535. PubMed ID: 38060839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Smart Textile-Integrated Microelectronic Systems for Wearable Applications.
    Shi J; Liu S; Zhang L; Yang B; Shu L; Yang Y; Ren M; Wang Y; Chen J; Chen W; Chai Y; Tao X
    Adv Mater; 2020 Feb; 32(5):e1901958. PubMed ID: 31273850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust, Reprocessable, and Reconfigurable Cellulose-Based Multiple Shape Memory Polymer Enabled by Dynamic Metal-Ligand Bonds.
    Wang W; Wang F; Zhang C; Wang Z; Tang J; Zeng X; Wan X
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25233-25242. PubMed ID: 31578850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designable Micro-/Nano-Structured Smart Polymeric Materials.
    Wang W; Li PF; Xie R; Ju XJ; Liu Z; Chu LY
    Adv Mater; 2022 Nov; 34(46):e2107877. PubMed ID: 34897843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers.
    Zhang C; Lu X; Wang Z; Xia H
    Macromol Rapid Commun; 2022 Mar; 43(5):e2100768. PubMed ID: 34964192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Drug-releasing shape-memory polymers - the role of morphology, processing effects, and matrix degradation.
    Wischke C; Behl M; Lendlein A
    Expert Opin Drug Deliv; 2013 Sep; 10(9):1193-205. PubMed ID: 23668314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overcoming the adhesion paradox and switchability conflict on rough surfaces with shape-memory polymers.
    Linghu C; Liu Y; Tan YY; Sing JHM; Tang Y; Zhou A; Wang X; Li D; Gao H; Hsia KJ
    Proc Natl Acad Sci U S A; 2023 Mar; 120(13):e2221049120. PubMed ID: 36940332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shape-memory polymers.
    Lendlein A; Kelch S
    Angew Chem Int Ed Engl; 2002 Jun; 41(12):2035-57. PubMed ID: 19746597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomedical applications of thermally activated shape memory polymers.
    Small W; Singhal P; Wilson TS; Maitland DJ
    J Mater Chem; 2010 May; 20(18):3356-3366. PubMed ID: 21258605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AI-Driven Data Analysis of Quantifying Environmental Impact and Efficiency of Shape Memory Polymers.
    Olawumi MA; Oladapo BI; Olugbade TO; Omigbodun FT; Olawade DB
    Biomimetics (Basel); 2024 Aug; 9(8):. PubMed ID: 39194469
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Principles for Controlling the Shape Recovery and Degradation Behavior of Biodegradable Shape-Memory Polymers in Biomedical Applications.
    Lee J; Kang SK
    Micromachines (Basel); 2021 Jun; 12(7):. PubMed ID: 34199036
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.