These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1118 related articles for article (PubMed ID: 3536282)
1. Induction and inhibition of cathepsin B and hemoglobin-hydrolase activity in murine B16 melanoma by thiol protease inhibitors. Nakao H; Kurita Y; Tsuboi R; Takamori K; Ogawa H Comp Biochem Physiol B; 1986; 85(2):435-7. PubMed ID: 3536282 [TBL] [Abstract][Full Text] [Related]
2. Differences in induction of lysosomal protease activity by protease inhibitors in B16 melanoma cell lines. Nakao H; Kurita Y; Tsuboi R; Takamori K; Ogawa H Int J Biochem; 1989; 21(2):139-42. PubMed ID: 2663559 [TBL] [Abstract][Full Text] [Related]
3. Induction of hemoglobin-hydrolase activity by the thiol-protease inhibitors leupeptin and antipain in adult rat liver cells in primary culture. Tanaka K; Ikegaki N; Ichihara A Biochem Biophys Res Commun; 1979 Nov; 91(1):102-7. PubMed ID: 518610 [No Abstract] [Full Text] [Related]
4. Effect of Ca2+ on the inhibition of calcium-activated neutral protease by leupeptin, antipain and epoxysuccinate derivatives. Suzuki K; Tsuji S; Ishiura S FEBS Lett; 1981 Dec; 136(1):119-22. PubMed ID: 6274695 [No Abstract] [Full Text] [Related]
5. Selective inhibition of proteolytic enzymes in an in vivo mouse model for experimental metastasis. Ostrowski LE; Ahsan A; Suthar BP; Pagast P; Bain DL; Wong C; Patel A; Schultz RM Cancer Res; 1986 Aug; 46(8):4121-8. PubMed ID: 3089587 [TBL] [Abstract][Full Text] [Related]
6. Interaction of tumor and surrounding tissue of mice inoculated B16 melanoma variants in terms of enzyme activity. Nakao H; Takamori K; Ogawa H Int J Biochem; 1989; 21(7):739-43. PubMed ID: 2668066 [TBL] [Abstract][Full Text] [Related]
7. The role of proteases in stratum corneum: involvement in stratum corneum desquamation. Suzuki Y; Nomura J; Koyama J; Horii I Arch Dermatol Res; 1994; 286(5):249-53. PubMed ID: 7520224 [TBL] [Abstract][Full Text] [Related]
8. The effect of protease inhibitors and decreased temperature on the degradation of different classes of proteins in cultured hepatocytes. Neff NT; DeMartino GN; Goldberg AL J Cell Physiol; 1979 Dec; 101(3):439-57. PubMed ID: 528571 [TBL] [Abstract][Full Text] [Related]
9. Involvement of thiol proteases in galactosialidosis. Takeda E; Kuroda Y; Toshima K; Naito E; Ito M; Miyao M; Kominami E; Katunuma N Clin Chim Acta; 1986 Mar; 155(2):109-15. PubMed ID: 3084137 [TBL] [Abstract][Full Text] [Related]
10. Inhibition by leupeptin and antipain of the intracellular proteolysis of Ii. Nguyen QV; Knapp W; Humphreys RE Hum Immunol; 1989 Mar; 24(3):153-63. PubMed ID: 2925452 [TBL] [Abstract][Full Text] [Related]
11. Inhibitions of degradation of rat liver aldolase and lactic dehydrogenase by N-[N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl] agmatine or leupeptin in vivo. Kominami E; Hashida S; Katunuma N Biochem Biophys Res Commun; 1980 Apr; 93(3):713-9. PubMed ID: 7387670 [No Abstract] [Full Text] [Related]
12. Proteolytic modification of rat liver fructose-1,6-bisphosphate aldolase by administration of leupeptin in vivo. Kominami E; Hashida S; Katunuma N Biochim Biophys Acta; 1981 Jun; 659(2):378-89. PubMed ID: 7020765 [TBL] [Abstract][Full Text] [Related]
13. Role of cellular proteinases in acute myocardial infarction. I. Proteolysis in nonischemic and ischemic rat myocardium and the effects of antipain, leupeptin, pepstatin and chymostatin administered in vivo. Bolli R; Cannon RO; Speir E; Goldstein RE; Epstein SE J Am Coll Cardiol; 1983 Oct; 2(4):671-80. PubMed ID: 6350399 [TBL] [Abstract][Full Text] [Related]
14. Properties of a plasma membrane-associated cathepsin B-like cysteine proteinase in metastatic B16 melanoma variants. Rozhin J; Robinson D; Stevens MA; Lah TT; Honn KV; Ryan RE; Sloane BF Cancer Res; 1987 Dec; 47(24 Pt 1):6620-8. PubMed ID: 2824039 [TBL] [Abstract][Full Text] [Related]
15. Acid proteolytic activities in mouse liver and muscle tissues after treatment with protease inhibitor leupeptin. Salminen A; Kihlström M; Vihko V Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 79(1):93-5. PubMed ID: 6149885 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of Leishmania amastigote growth by antipain and leupeptin. Coombs GH; Baxter J Ann Trop Med Parasitol; 1984 Feb; 78(1):21-4. PubMed ID: 6721611 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of fibrinogen receptor expression and serotonin release by leupeptin and antipain. Baldassare JJ; Bakshian S; Knipp MA; Fisher GJ J Biol Chem; 1985 Sep; 260(19):10531-5. PubMed ID: 2993278 [TBL] [Abstract][Full Text] [Related]
18. Inhibition studies of some serine and thiol proteinases by new leupeptin analogues. McConnell RM; York JL; Frizzell D; Ezell C J Med Chem; 1993 Apr; 36(8):1084-9. PubMed ID: 8478905 [TBL] [Abstract][Full Text] [Related]
19. Effect of the selective and non-selective cysteine protease inhibitors on the intracellular processing of interleukin 6 by HEPG2 cells. Peppard JV; Knap AK In Vitro Cell Dev Biol Anim; 1999 Sep; 35(8):459-64. PubMed ID: 10501085 [TBL] [Abstract][Full Text] [Related]
20. Antipain inhibits thyroxine-induced synthesis of carbamyl phosphate synthetase I in tadpole liver. Mori M; Cohen PP Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5339-43. PubMed ID: 214783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]