BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

6131 related articles for article (PubMed ID: 3536282)

  • 1. Induction and inhibition of cathepsin B and hemoglobin-hydrolase activity in murine B16 melanoma by thiol protease inhibitors.
    Nakao H; Kurita Y; Tsuboi R; Takamori K; Ogawa H
    Comp Biochem Physiol B; 1986; 85(2):435-7. PubMed ID: 3536282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in induction of lysosomal protease activity by protease inhibitors in B16 melanoma cell lines.
    Nakao H; Kurita Y; Tsuboi R; Takamori K; Ogawa H
    Int J Biochem; 1989; 21(2):139-42. PubMed ID: 2663559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of hemoglobin-hydrolase activity by the thiol-protease inhibitors leupeptin and antipain in adult rat liver cells in primary culture.
    Tanaka K; Ikegaki N; Ichihara A
    Biochem Biophys Res Commun; 1979 Nov; 91(1):102-7. PubMed ID: 518610
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of Ca2+ on the inhibition of calcium-activated neutral protease by leupeptin, antipain and epoxysuccinate derivatives.
    Suzuki K; Tsuji S; Ishiura S
    FEBS Lett; 1981 Dec; 136(1):119-22. PubMed ID: 6274695
    [No Abstract]   [Full Text] [Related]  

  • 5. Selective inhibition of proteolytic enzymes in an in vivo mouse model for experimental metastasis.
    Ostrowski LE; Ahsan A; Suthar BP; Pagast P; Bain DL; Wong C; Patel A; Schultz RM
    Cancer Res; 1986 Aug; 46(8):4121-8. PubMed ID: 3089587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of tumor and surrounding tissue of mice inoculated B16 melanoma variants in terms of enzyme activity.
    Nakao H; Takamori K; Ogawa H
    Int J Biochem; 1989; 21(7):739-43. PubMed ID: 2668066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of proteases in stratum corneum: involvement in stratum corneum desquamation.
    Suzuki Y; Nomura J; Koyama J; Horii I
    Arch Dermatol Res; 1994; 286(5):249-53. PubMed ID: 7520224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of protease inhibitors and decreased temperature on the degradation of different classes of proteins in cultured hepatocytes.
    Neff NT; DeMartino GN; Goldberg AL
    J Cell Physiol; 1979 Dec; 101(3):439-57. PubMed ID: 528571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of thiol proteases in galactosialidosis.
    Takeda E; Kuroda Y; Toshima K; Naito E; Ito M; Miyao M; Kominami E; Katunuma N
    Clin Chim Acta; 1986 Mar; 155(2):109-15. PubMed ID: 3084137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition by leupeptin and antipain of the intracellular proteolysis of Ii.
    Nguyen QV; Knapp W; Humphreys RE
    Hum Immunol; 1989 Mar; 24(3):153-63. PubMed ID: 2925452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitions of degradation of rat liver aldolase and lactic dehydrogenase by N-[N-(L-3-trans-carboxyoxirane-2-carbonyl)-L-leucyl] agmatine or leupeptin in vivo.
    Kominami E; Hashida S; Katunuma N
    Biochem Biophys Res Commun; 1980 Apr; 93(3):713-9. PubMed ID: 7387670
    [No Abstract]   [Full Text] [Related]  

  • 12. Proteolytic modification of rat liver fructose-1,6-bisphosphate aldolase by administration of leupeptin in vivo.
    Kominami E; Hashida S; Katunuma N
    Biochim Biophys Acta; 1981 Jun; 659(2):378-89. PubMed ID: 7020765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of cellular proteinases in acute myocardial infarction. I. Proteolysis in nonischemic and ischemic rat myocardium and the effects of antipain, leupeptin, pepstatin and chymostatin administered in vivo.
    Bolli R; Cannon RO; Speir E; Goldstein RE; Epstein SE
    J Am Coll Cardiol; 1983 Oct; 2(4):671-80. PubMed ID: 6350399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of a plasma membrane-associated cathepsin B-like cysteine proteinase in metastatic B16 melanoma variants.
    Rozhin J; Robinson D; Stevens MA; Lah TT; Honn KV; Ryan RE; Sloane BF
    Cancer Res; 1987 Dec; 47(24 Pt 1):6620-8. PubMed ID: 2824039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid proteolytic activities in mouse liver and muscle tissues after treatment with protease inhibitor leupeptin.
    Salminen A; Kihlström M; Vihko V
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 79(1):93-5. PubMed ID: 6149885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of Leishmania amastigote growth by antipain and leupeptin.
    Coombs GH; Baxter J
    Ann Trop Med Parasitol; 1984 Feb; 78(1):21-4. PubMed ID: 6721611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of fibrinogen receptor expression and serotonin release by leupeptin and antipain.
    Baldassare JJ; Bakshian S; Knipp MA; Fisher GJ
    J Biol Chem; 1985 Sep; 260(19):10531-5. PubMed ID: 2993278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition studies of some serine and thiol proteinases by new leupeptin analogues.
    McConnell RM; York JL; Frizzell D; Ezell C
    J Med Chem; 1993 Apr; 36(8):1084-9. PubMed ID: 8478905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the selective and non-selective cysteine protease inhibitors on the intracellular processing of interleukin 6 by HEPG2 cells.
    Peppard JV; Knap AK
    In Vitro Cell Dev Biol Anim; 1999 Sep; 35(8):459-64. PubMed ID: 10501085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antipain inhibits thyroxine-induced synthesis of carbamyl phosphate synthetase I in tadpole liver.
    Mori M; Cohen PP
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5339-43. PubMed ID: 214783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 307.