These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 35362947)
1. Composite Polyelectrolyte Photothermal Hydrogel with Anti-biofouling and Antibacterial Properties for the Real-World Application of Solar Steam Generation. Peng B; Lyu Q; Gao Y; Li M; Xie G; Xie Z; Zhang H; Ren J; Zhu J; Zhang L; Wang P ACS Appl Mater Interfaces; 2022 Apr; 14(14):16546-16557. PubMed ID: 35362947 [TBL] [Abstract][Full Text] [Related]
2. Cationic Photothermal Hydrogels with Bacteria-Inhibiting Capability for Freshwater Production via Solar-Driven Steam Generation. Peng B; Gao Y; Lyu Q; Xie Z; Li M; Zhang L; Zhu J ACS Appl Mater Interfaces; 2021 Aug; 13(31):37724-37733. PubMed ID: 34338498 [TBL] [Abstract][Full Text] [Related]
3. Polypyrrole-coated nanocellulose for solar steam generation: A multi-surface photothermal ink with antibacterial and antifouling properties. Hanif Z; Tariq MZ; Khan ZA; La M; Choi D; Park SJ Carbohydr Polym; 2022 Sep; 292():119701. PubMed ID: 35725185 [TBL] [Abstract][Full Text] [Related]
4. Flexible Anti-Biofouling MXene/Cellulose Fibrous Membrane for Sustainable Solar-Driven Water Purification. Zha XJ; Zhao X; Pu JH; Tang LS; Ke K; Bao RY; Bai L; Liu ZY; Yang MB; Yang W ACS Appl Mater Interfaces; 2019 Oct; 11(40):36589-36597. PubMed ID: 31513743 [TBL] [Abstract][Full Text] [Related]
5. A Magneto-Heated Silk Fibroin Scaffold for Anti-Biofouling Solar Steam Generation. Xing H; Song Y; Xu H; Chen S; Li K; Dong L; Wang B; Xue J; Lu Y Small; 2023 May; 19(18):e2206189. PubMed ID: 36720800 [TBL] [Abstract][Full Text] [Related]
6. Wood-Based Solar Interface Evaporation Device with Self-Desalting and High Antibacterial Activity for Efficient Solar Steam Generation. Yang J; Chen Y; Jia X; Li Y; Wang S; Song H ACS Appl Mater Interfaces; 2020 Oct; 12(41):47029-47037. PubMed ID: 32960557 [TBL] [Abstract][Full Text] [Related]
7. A Salt-Resistant and Antibacterial Cu Liu P; Xu L; Wang ZY; Huo Y; Hu YB; Fu ML; Yuan B ChemSusChem; 2023 Aug; 16(15):e202300611. PubMed ID: 37271731 [TBL] [Abstract][Full Text] [Related]
8. High-performance solar-driven interfacial evaporation through molecular design of antibacterial, biomass-derived hydrogels. Hao L; Liu N; Bai H; He P; Niu R; Gong J J Colloid Interface Sci; 2022 Feb; 608(Pt 1):840-852. PubMed ID: 34689113 [TBL] [Abstract][Full Text] [Related]
9. Bio-Derived Photothermal Materials and Evaporators for Sustainable Solar Energy-Driven Water Process. Ge Y; Su Z; Ivan MNAS; Wang C; Tsang YH; Xu S; Bai G Langmuir; 2022 Nov; 38(43):13187-13194. PubMed ID: 36255348 [TBL] [Abstract][Full Text] [Related]
10. Plant-Mimetic Vertical-Channel Hydrogels for Synergistic Water Purification and Interfacial Water Evaporation. Niu R; Ding Y; Hao L; Ren J; Gong J; Qu J ACS Appl Mater Interfaces; 2022 Oct; 14(40):45533-45544. PubMed ID: 36178300 [TBL] [Abstract][Full Text] [Related]
11. Natural lignocellulosic kapok fiber/MXene constructed hydrogel evaporators for high efficiency solar steam generation. Su Q; Wu Z; Huang X; Yan J; Tang L; Xue H; Gao J Int J Biol Macromol; 2024 Mar; 260(Pt 1):129403. PubMed ID: 38219946 [TBL] [Abstract][Full Text] [Related]
12. Enhancing the anti-biofouling property of solar evaporator through the synergistic antibacterial effect of lignin and nano silver. Yang X; Tang J; Song Z; Li W; Gong X; Liu W Int J Biol Macromol; 2024 May; 268(Pt 2):131953. PubMed ID: 38685536 [TBL] [Abstract][Full Text] [Related]
13. Double-layer cellulose hydrogel solar steam generation for high-efficiency desalination. Hu N; Xu Y; Liu Z; Liu M; Shao X; Wang J Carbohydr Polym; 2020 Sep; 243():116480. PubMed ID: 32532401 [TBL] [Abstract][Full Text] [Related]
14. Sunflower-Stalk-Based Solar-Driven Evaporator with a Confined 2D Water Channel and an Enclosed Thermal-Insulating Cellular Structure for Stable and Efficient Steam Generation. Liu F; Xia L; Zhang L; Guo F; Zhang X; Yu Y; Yang R ACS Appl Mater Interfaces; 2021 Nov; 13(46):55299-55306. PubMed ID: 34780144 [TBL] [Abstract][Full Text] [Related]
15. Dome-arrayed chitosan/PVA hydrogel-based solar evaporator for steam generation. Zhu M; Liu X; Tian Y; Caratenuto A; Chen F; Zheng Y Sci Rep; 2022 Mar; 12(1):4403. PubMed ID: 35292701 [TBL] [Abstract][Full Text] [Related]
16. Co Zhao L; Yang Q; Guo W; Liu H; Ma T; Qu F ACS Appl Mater Interfaces; 2019 Jun; 11(23):20820-20827. PubMed ID: 31117447 [TBL] [Abstract][Full Text] [Related]
17. Sustainable Self-Cleaning Evaporators for Highly Efficient Solar Desalination Using a Highly Elastic Sponge-like Hydrogel. Chu A; Yang M; Yang H; Shi X; Chen J; Fang J; Wang Z; Li H ACS Appl Mater Interfaces; 2022 Aug; 14(31):36116-36131. PubMed ID: 35913129 [TBL] [Abstract][Full Text] [Related]
18. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 sun Illumination. Yin X; Zhang Y; Guo Q; Cai X; Xiao J; Ding Z; Yang J ACS Appl Mater Interfaces; 2018 Apr; 10(13):10998-11007. PubMed ID: 29533662 [TBL] [Abstract][Full Text] [Related]
19. Cellulose-based bi-layer hydrogel evaporator with a low evaporation enthalpy for efficient solar desalination. Shu L; Zhang XF; Wang Z; Liu J; Yao J Carbohydr Polym; 2024 Mar; 327():121695. PubMed ID: 38171664 [TBL] [Abstract][Full Text] [Related]
20. A rapid-triggered approach towards antibacterial hydrogel wound dressing with synergic photothermal and sterilization profiles. Chen Q; Li S; Zhao W; Zhao C Biomater Adv; 2022 Jul; 138():212873. PubMed ID: 35913253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]