These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35362971)

  • 1. Electrostatic Charges Regulate Chemiluminescence by Electron Transfer at the Liquid-Solid Interface.
    Zhang J; Lin S; Wang ZL
    J Phys Chem B; 2022 Apr; 126(14):2754-2760. PubMed ID: 35362971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triboelectric Nanogenerator as a Probe for Measuring the Charge Transfer between Liquid and Solid Surfaces.
    Zhang J; Lin S; Zheng M; Wang ZL
    ACS Nano; 2021 Sep; 15(9):14830-14837. PubMed ID: 34415141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Contact-Electrification Induced Charge Transfer on a Liquid Droplet after Contacting with a Liquid or Solid.
    Tang Z; Lin S; Wang ZL
    Adv Mater; 2021 Oct; 33(42):e2102886. PubMed ID: 34476851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of Contact Electrification at Liquid-Gas Interface.
    Wang F; Yang P; Tao X; Shi Y; Li S; Liu Z; Chen X; Wang ZL
    ACS Nano; 2021 Nov; 15(11):18206-18213. PubMed ID: 34677929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile chemiluminescence sensing for ultrasensitive detection of heparin using charge effect of positively-charged AuNPs.
    Qi Y; He J; Xiu FR; Yu X; Li Y; Lu Y; Gao X; Song Z; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 216():310-318. PubMed ID: 30909087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power generation from the interaction of a liquid droplet and a liquid membrane.
    Nie J; Wang Z; Ren Z; Li S; Chen X; Lin Wang Z
    Nat Commun; 2019 May; 10(1):2264. PubMed ID: 31118419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron Transfer as a Liquid Droplet Contacting a Polymer Surface.
    Zhan F; Wang AC; Xu L; Lin S; Shao J; Chen X; Wang ZL
    ACS Nano; 2020 Dec; 14(12):17565-17573. PubMed ID: 33232122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced effect of aggregated gold nanoparticles on luminol chemiluminescence system and its analytical application.
    Qi Y; Li B
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jul; 111():1-6. PubMed ID: 23602952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of dioxygen on luminol chemiluminescence.
    Baj S; Krawczyk T; Staszewska K
    Luminescence; 2009; 24(5):348-54. PubMed ID: 19294631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on the reaction mechanism and the static injection chemiluminescence method for detection of acetaminophen.
    Wu Y; Zhang H; Yu S; Yu F; Li Y; Zhang H; Qu L; Harrington Pde B
    Luminescence; 2013; 28(6):905-9. PubMed ID: 23408702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrasensitive and highly selective determination method for quinones by high-performance liquid chromatography with photochemically initiated luminol chemiluminescence.
    Ahmed S; Kishikawa N; Ohyama K; Maki T; Kurosaki H; Nakashima K; Kuroda N
    J Chromatogr A; 2009 May; 1216(18):3977-84. PubMed ID: 19321171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct determination of horseradish peroxidase encapsulated in liposomes by using luminol chemiluminescence.
    Kamidate T; Komatsu K; Tani H; Ishida A
    Anal Sci; 2008 Apr; 24(4):477-81. PubMed ID: 18403838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination.
    Chen Z; Tan Y; Xu K; Zhang L; Qiu B; Guo L; Lin Z; Chen G
    Biosens Bioelectron; 2016 Jan; 75():8-14. PubMed ID: 26278045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triboelectric Nanogenerator Array as a Probe for In Situ Dynamic Mapping of Interface Charge Transfer at a Liquid-Solid Contacting.
    Zhang J; Lin S; Wang ZL
    ACS Nano; 2023 Jan; ():. PubMed ID: 36602519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic electrochemistry at insulators.
    Liu C; Bard AJ
    Nat Mater; 2008 Jun; 7(6):505-9. PubMed ID: 18362908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Photo-Excitation on Contact Electrification at Liquid-Solid Interface.
    Tao X; Nie J; Li S; Shi Y; Lin S; Chen X; Wang ZL
    ACS Nano; 2021 Jun; 15(6):10609-10617. PubMed ID: 34101417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding contact electrification at liquid-solid interfaces from surface electronic structure.
    Sun M; Lu Q; Wang ZL; Huang B
    Nat Commun; 2021 Mar; 12(1):1752. PubMed ID: 33741951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced chemiluminescence of the luminol-AgNO3 system by Ag nanoparticles.
    Li S; Sun H; Wang D; Hong J; Tao S; Yu H; Wang X; Wei X
    Luminescence; 2012; 27(3):211-6. PubMed ID: 21809432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of chemiluminescence method for determination of 10-hydroxycamptothecin based on luminol-[Ag(HIO₆)₂]⁵⁻ reaction in alkaline solution.
    Sun H; Chen P; Shi S; Li L
    Luminescence; 2011; 26(5):356-62. PubMed ID: 20812199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.