These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 35363018)

  • 1. Imaging the Spatial Distribution of Electronic States in Graphene Using Electron Energy-Loss Spectroscopy: Prospect of Orbital Mapping.
    Bugnet M; Ederer M; Lazarov VK; Li L; Ramasse QM; Löffler S; Kepaptsoglou DM
    Phys Rev Lett; 2022 Mar; 128(11):116401. PubMed ID: 35363018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current opinion on the prospect of mapping electronic orbitals in the transmission electron microscope: State of the art, challenges and perspectives.
    Bugnet M; Löffler S; Ederer M; Kepaptsoglou DM; Ramasse QM
    J Microsc; 2024 Sep; 295(3):217-235. PubMed ID: 38818951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electronic properties of superatom states of hollow molecules.
    Feng M; Zhao J; Huang T; Zhu X; Petek H
    Acc Chem Res; 2011 May; 44(5):360-8. PubMed ID: 21413734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing a Defect-Site-Specific Electronic Orbital in Graphene with Single-Atom Sensitivity.
    Xu M; Li A; Pennycook SJ; Gao SP; Zhou W
    Phys Rev Lett; 2023 Nov; 131(18):186202. PubMed ID: 37977630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-atom vibrational spectroscopy with chemical-bonding sensitivity.
    Xu M; Bao DL; Li A; Gao M; Meng D; Li A; Du S; Su G; Pennycook SJ; Pantelides ST; Zhou W
    Nat Mater; 2023 May; 22(5):612-618. PubMed ID: 36928385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing experimental parameters for orbital mapping.
    Ederer M; Löffler S
    Ultramicroscopy; 2024 Feb; 256():113866. PubMed ID: 37866278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct visualization of diffuse unoccupied molecular orbitals at a rubrene/graphite interface.
    Yamada T; Kinoshita M; Araragi K; Watanabe Y; Ueba T; Kato HS; Munakata T
    Phys Chem Chem Phys; 2018 Jun; 20(25):17415-17422. PubMed ID: 29911243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Element-specific characterization of transient electronic structure of solvated Fe(II) complexes with time-resolved soft X-ray absorption spectroscopy.
    Hong K; Cho H; Schoenlein RW; Kim TK; Huse N
    Acc Chem Res; 2015 Nov; 48(11):2957-66. PubMed ID: 26488127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Group Mapping by Electron Beam Vibrational Spectroscopy from Nanoscale Volumes.
    Collins SM; Kepaptsoglou DM; Hou J; Ashling CW; Radtke G; Bennett TD; Midgley PA; Ramasse QM
    Nano Lett; 2020 Feb; 20(2):1272-1279. PubMed ID: 31944111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finding Valence Antibonding Levels while Avoiding Rydberg, Pseudo-continuum, and Dipole-Bound Orbitals.
    Anusiewicz I; Skurski P; Simons J
    J Am Chem Soc; 2022 Jun; 144(25):11348-11363. PubMed ID: 35699697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct determination of the chemical bonding of individual impurities in graphene.
    Zhou W; Kapetanakis MD; Prange MP; Pantelides ST; Pennycook SJ; Idrobo JC
    Phys Rev Lett; 2012 Nov; 109(20):206803. PubMed ID: 23215517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic Structure Modification of Ion Implanted Graphene: The Spectroscopic Signatures of p- and n-Type Doping.
    Kepaptsoglou D; Hardcastle TP; Seabourne CR; Bangert U; Zan R; Amani JA; Hofsäss H; Nicholls RJ; Brydson RM; Scott AJ; Ramasse QM
    ACS Nano; 2015 Nov; 9(11):11398-407. PubMed ID: 26446310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of the anisotropy of the inelastic scattering of fast electrons accompanied by the K-shell ionization of a carbon nanotube.
    Saitoh K; Nagasaka K; Tanaka N
    J Electron Microsc (Tokyo); 2006 Dec; 55(6):281-8. PubMed ID: 17303621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Visualization of the Charge Transfer in a Graphene/α-RuCl
    Rossi A; Johnson C; Balgley J; Thomas JC; Francaviglia L; Dettori R; Schmid AK; Watanabe K; Taniguchi T; Cothrine M; Mandrus DG; Jozwiak C; Bostwick A; Henriksen EA; Weber-Bargioni A; Rotenberg E
    Nano Lett; 2023 Sep; 23(17):8000-8005. PubMed ID: 37639696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially-resolved structure and electronic properties of graphene on polycrystalline Ni.
    Sun J; Hannon JB; Tromp RM; Johari P; Bol AA; Shenoy VB; Pohl K
    ACS Nano; 2010 Dec; 4(12):7073-7. PubMed ID: 21062038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope.
    Yakovlev S; Libera M
    Micron; 2008 Aug; 39(6):734-40. PubMed ID: 18096395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy.
    Tan H; Turner S; Yücelen E; Verbeeck J; Van Tendeloo G
    Phys Rev Lett; 2011 Sep; 107(10):107602. PubMed ID: 21981530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy.
    Carbone F; Kwon OH; Zewail AH
    Science; 2009 Jul; 325(5937):181-4. PubMed ID: 19589997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.