These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35363027)

  • 1. Navier-Stokes Equations Do Not Describe the Smallest Scales of Turbulence in Gases.
    McMullen RM; Krygier MC; Torczynski JR; Gallis MA
    Phys Rev Lett; 2022 Mar; 128(11):114501. PubMed ID: 35363027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular-Level Simulations of Turbulence and Its Decay.
    Gallis MA; Bitter NP; Koehler TP; Torczynski JR; Plimpton SJ; Papadakis G
    Phys Rev Lett; 2017 Feb; 118(6):064501. PubMed ID: 28234505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipation-range fluid turbulence and thermal noise.
    Bandak D; Goldenfeld N; Mailybaev AA; Eyink G
    Phys Rev E; 2022 Jun; 105(6-2):065113. PubMed ID: 35854607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the dispersive and dissipative scales alpha and beta on the energy spectrum of the Navier-Stokes alphabeta equations.
    Chen X; Fried E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046317. PubMed ID: 18999536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of the inherent separation of scales in the Navier-Stokes- alphabeta equations.
    Kim TY; Cassiani M; Albertson JD; Dolbow JE; Fried E; Gurtin ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):045307. PubMed ID: 19518292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-attenuation of extreme events in Navier-Stokes turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Nat Commun; 2020 Nov; 11(1):5852. PubMed ID: 33203875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Statistical-mechanical predictions and Navier-Stokes dynamics of two-dimensional flows on a bounded domain.
    Brands H; Maassen SR; Clercx HJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2864-74. PubMed ID: 11970092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of intense dissipation in high Reynolds number turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210088. PubMed ID: 35034489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuum description of rarefied gas dynamics. I. Derivation from kinetic theory.
    Chen X; Rao H; Spiegel EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046308. PubMed ID: 11690147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetically reduced local Navier-Stokes equations: an alternative approach to hydrodynamics.
    Karlin IV; Tomboulides AG; Frouzakis CE; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035702. PubMed ID: 17025701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dimensional representations of exact coherent states of the Navier-Stokes equations from the resolvent model of wall turbulence.
    Sharma AS; Moarref R; McKeon BJ; Park JS; Graham MD; Willis AP
    Phys Rev E; 2016 Feb; 93(2):021102. PubMed ID: 26986280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuing invariant solutions towards the turbulent flow.
    Parente E; Farano M; Robinet JC; De Palma P; Cherubini S
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210031. PubMed ID: 35527631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase transition in time-reversible Navier-Stokes equations.
    Shukla V; Dubrulle B; Nazarenko S; Krstulovic G; Thalabard S
    Phys Rev E; 2019 Oct; 100(4-1):043104. PubMed ID: 31770927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of chaos in fully developed turbulence.
    Lalescu CC; Meneveau C; Eyink GL
    Phys Rev Lett; 2013 Feb; 110(8):084102. PubMed ID: 23473150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New class of turbulence in active fluids.
    Bratanov V; Jenko F; Frey E
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15048-53. PubMed ID: 26598708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turbulence Statistics in a Two-Dimensional Vortex Condensate.
    Frishman A; Herbert C
    Phys Rev Lett; 2018 May; 120(20):204505. PubMed ID: 29864335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knudsen number effects on the nonlinear acoustic spectral energy cascade.
    Thirani S; Gupta P; Scalo C
    Phys Rev E; 2020 Feb; 101(2-1):023101. PubMed ID: 32168670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsteady turbulence cascades.
    Goto S; Vassilicos JC
    Phys Rev E; 2016 Nov; 94(5-1):053108. PubMed ID: 27967192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.