These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 35363478)

  • 1. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications.
    Mlýnský V; Janeček M; Kührová P; Fröhlking T; Otyepka M; Bussi G; Banáš P; Šponer J
    J Chem Theory Comput; 2022 Apr; 18(4):2642-2656. PubMed ID: 35363478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies.
    Kührová P; Best RB; Bottaro S; Bussi G; Šponer J; Otyepka M; Banáš P
    J Chem Theory Comput; 2016 Sep; 12(9):4534-48. PubMed ID: 27438572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into Stability and Folding of GNRA and UNCG Tetraloops Revealed by Microsecond Molecular Dynamics and Well-Tempered Metadynamics.
    Haldar S; Kührová P; Banáš P; Spiwok V; Šponer J; Hobza P; Otyepka M
    J Chem Theory Comput; 2015 Aug; 11(8):3866-77. PubMed ID: 26574468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions.
    Kührová P; Mlýnský V; Zgarbová M; Krepl M; Bussi G; Best RB; Otyepka M; Šponer J; Banáš P
    J Chem Theory Comput; 2019 May; 15(5):3288-3305. PubMed ID: 30896943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides.
    Mlýnský V; Kührová P; Kühr T; Otyepka M; Bussi G; Banáš P; Šponer J
    J Chem Theory Comput; 2020 Jun; 16(6):3936-3946. PubMed ID: 32384244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer Folding of RNA Tetraloops? Are We There Yet?
    Kührová P; Banáš P; Best RB; Šponer J; Otyepka M
    J Chem Theory Comput; 2013 Apr; 9(4):2115-25. PubMed ID: 26583558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free Energy Landscape of GAGA and UUCG RNA Tetraloops.
    Bottaro S; Banáš P; Šponer J; Bussi G
    J Phys Chem Lett; 2016 Oct; 7(20):4032-4038. PubMed ID: 27661094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.
    Banáš P; Hollas D; Zgarbová M; Jurečka P; Orozco M; Cheatham TE; Šponer J; Otyepka M
    J Chem Theory Comput; 2010 Dec; 6(12):3836-3849. PubMed ID: 35283696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-Balancing Replica Exchange with Solute Tempering for Sampling Dynamic Protein Conformations.
    Zhang Y; Liu X; Chen J
    J Chem Theory Comput; 2023 Mar; 19(5):1602-1614. PubMed ID: 36791464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosting the conformational sampling by combining replica exchange with solute tempering and well-sliced metadynamics.
    Kapakayala AB; Nair NN
    J Comput Chem; 2021 Dec; 42(31):2233-2240. PubMed ID: 34585768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replica-Exchange Methods for Biomolecular Simulations.
    Sugita Y; Kamiya M; Oshima H; Re S
    Methods Mol Biol; 2019; 2022():155-177. PubMed ID: 31396903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically Accurate Relative Folding Stability of RNA Hairpins from Molecular Simulations.
    Smith LG; Tan Z; Spasic A; Dutta D; Salas-Estrada LA; Grossfield A; Mathews DH
    J Chem Theory Comput; 2018 Dec; 14(12):6598-6612. PubMed ID: 30375860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution reversible folding of hyperstable RNA tetraloops using molecular dynamics simulations.
    Chen AA; García AE
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16820-5. PubMed ID: 24043821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of enhanced sampling provided by accelerated molecular dynamics with Hamiltonian replica exchange methods.
    Roe DR; Bergonzo C; Cheatham TE
    J Phys Chem B; 2014 Apr; 118(13):3543-52. PubMed ID: 24625009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: Multiple atomistic force fields in a single enhanced sampling simulation.
    Hoang Viet M; Derreumaux P; Nguyen PH
    J Chem Phys; 2015 Jul; 143(2):021101. PubMed ID: 26178083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing the Flexibility of a Protein-Ligand Complex: Binding Free Energies from Different Enhanced Sampling Techniques.
    Wingbermühle S; Schäfer LV
    J Chem Theory Comput; 2020 Jul; 16(7):4615-4630. PubMed ID: 32497432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations.
    Mráziková K; Mlýnský V; Kührová P; Pokorná P; Kruse H; Krepl M; Otyepka M; Banáš P; Šponer J
    J Chem Theory Comput; 2020 Dec; 16(12):7601-7617. PubMed ID: 33215915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields.
    Bergonzo C; Henriksen NM; Roe DR; Cheatham TE
    RNA; 2015 Sep; 21(9):1578-90. PubMed ID: 26124199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the Current State of Amber Force Field Modifications for DNA.
    Galindo-Murillo R; Robertson JC; Zgarbová M; Šponer J; Otyepka M; Jurečka P; Cheatham TE
    J Chem Theory Comput; 2016 Aug; 12(8):4114-27. PubMed ID: 27300587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.