These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 35363494)
1. Retention Time Prediction for TMT-Labeled Peptides in Proteomic LC-MS Experiments. Mizero B; Villacrés C; Spicer V; Viner R; Saba J; Patel B; Snovida S; Jensen P; Huhmer A; Krokhin OV J Proteome Res; 2022 May; 21(5):1218-1228. PubMed ID: 35363494 [TBL] [Abstract][Full Text] [Related]
2. Peptide retention time prediction for peptides with post-translational modifications: N-terminal (α-amine) and lysine (ε-amine) acetylation. Mizero B; Yeung D; Spicer V; Krokhin OV J Chromatogr A; 2021 Nov; 1657():462584. PubMed ID: 34619563 [TBL] [Abstract][Full Text] [Related]
3. Peptide retention time prediction in hydrophilic interaction liquid chromatography. Comparison of separation selectivity between bare silica and bonded stationary phases. Spicer V; Krokhin OV J Chromatogr A; 2018 Jan; 1534():75-84. PubMed ID: 29306631 [TBL] [Abstract][Full Text] [Related]
4. Chromatographic behaviour of peptides modified with amine-reacting tags for relative protein quantitation in proteomic applications. Yeung D; Anderson G; Spicer V; Krokhin OV J Chromatogr A; 2022 Aug; 1679():463391. PubMed ID: 35947918 [TBL] [Abstract][Full Text] [Related]
5. Sequence-Specific Model for Peptide Retention Time Prediction in Strong Cation Exchange Chromatography. Gussakovsky D; Neustaeter H; Spicer V; Krokhin OV Anal Chem; 2017 Nov; 89(21):11795-11802. PubMed ID: 28971681 [TBL] [Abstract][Full Text] [Related]
6. Confident Identification of Citrullination and Carbamylation Assisted by Peptide Retention Time Prediction. Villacrés C; Spicer V; Krokhin OV J Proteome Res; 2021 Mar; 20(3):1571-1581. PubMed ID: 33523662 [TBL] [Abstract][Full Text] [Related]
7. Separation Orthogonality in Liquid Chromatography-Mass Spectrometry for Proteomic Applications: Comparison of 16 Different Two-Dimensional Combinations. Yeung D; Mizero B; Gussakovsky D; Klaassen N; Lao Y; Spicer V; Krokhin OV Anal Chem; 2020 Mar; 92(5):3904-3912. PubMed ID: 32030975 [TBL] [Abstract][Full Text] [Related]
8. Peptide Retention Time Prediction in Hydrophilic Interaction Liquid Chromatography: Data Collection Methods and Features of Additive and Sequence-Specific Models. Krokhin OV; Ezzati P; Spicer V Anal Chem; 2017 May; 89(10):5526-5533. PubMed ID: 28429592 [TBL] [Abstract][Full Text] [Related]
9. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Dwivedi RC; Spicer V; Harder M; Antonovici M; Ens W; Standing KG; Wilkins JA; Krokhin OV Anal Chem; 2008 Sep; 80(18):7036-42. PubMed ID: 18686972 [TBL] [Abstract][Full Text] [Related]
10. Toward an Ultimate Solution for Peptide Retention Time Prediction: The Effect of Column Temperature on Separation Selectivity. Villacrés C; Mizero B; Spicer V; Viner R; Saba J; Patel B; Snovida S; Jensen P; Huhmer A; Krokhin OV J Proteome Res; 2024 Apr; 23(4):1488-1494. PubMed ID: 38530092 [TBL] [Abstract][Full Text] [Related]
11. Predicting peptide retention times for proteomics. Krokhin OV; Spicer V Curr Protoc Bioinformatics; 2010 Sep; Chapter 13():Unit 13.14. PubMed ID: 20836075 [TBL] [Abstract][Full Text] [Related]
13. Paradigm Shift: Major Role of Ion-Pairing-Dependent Size Exclusion Effects in Bottom-Up Proteomics Reversed-Phase Peptide Separations. Yeung D; Spicer V; Zahedi RP; Krokhin OV Anal Chem; 2024 Jun; 96(23):9721-9728. PubMed ID: 38807522 [TBL] [Abstract][Full Text] [Related]
14. Sequence-specific retention calculator. Algorithm for peptide retention prediction in ion-pair RP-HPLC: application to 300- and 100-A pore size C18 sorbents. Krokhin OV Anal Chem; 2006 Nov; 78(22):7785-95. PubMed ID: 17105172 [TBL] [Abstract][Full Text] [Related]
15. Peptide retention time prediction in hydrophilic interaction liquid chromatography: Zwitter-ionic sulfoalkylbetaine and phosphorylcholine stationary phases. Yeung D; Klaassen N; Mizero B; Spicer V; Krokhin OV J Chromatogr A; 2020 May; 1619():460909. PubMed ID: 32007221 [TBL] [Abstract][Full Text] [Related]
16. Peptide separation selectivity in proteomics LC-MS experiments: Comparison of formic and mixed formic/heptafluorobutyric acids ion-pairing modifiers. Gussakovsky D; Anderson G; Spicer V; Krokhin OV J Sep Sci; 2020 Oct; 43(20):3830-3839. PubMed ID: 32818315 [TBL] [Abstract][Full Text] [Related]
17. Predictions of peptides' retention times in reversed-phase liquid chromatography as a new supportive tool to improve protein identification in proteomics. Baczek T; Kaliszan R Proteomics; 2009 Feb; 9(4):835-47. PubMed ID: 19160394 [TBL] [Abstract][Full Text] [Related]
18. Acetic Acid Ion Pairing Additive for Reversed-Phase HPLC Improves Detection Sensitivity in Bottom-up Proteomics Compared to Formic Acid. Battellino T; Ogata K; Spicer V; Ishihama Y; Krokhin O J Proteome Res; 2023 Jan; 22(1):272-278. PubMed ID: 36480176 [TBL] [Abstract][Full Text] [Related]
19. Statistical learning of peptide retention behavior in chromatographic separations: a new kernel-based approach for computational proteomics. Pfeifer N; Leinenbach A; Huber CG; Kohlbacher O BMC Bioinformatics; 2007 Nov; 8():468. PubMed ID: 18053132 [TBL] [Abstract][Full Text] [Related]
20. Acid/Salt/pH Gradient Improved Resolution and Sensitivity in Proteomics Study Using 2D SCX-RP LC-MS. Zhu MZ; Li N; Wang YT; Liu N; Guo MQ; Sun BQ; Zhou H; Liu L; Wu JL J Proteome Res; 2017 Sep; 16(9):3470-3475. PubMed ID: 28753293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]