These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 35363512)

  • 1. Acoustofluidic black holes for multifunctional in-droplet particle manipulation.
    Liu P; Tian Z; Yang K; Naquin TD; Hao N; Huang H; Chen J; Ma Q; Bachman H; Zhang P; Xu X; Hu J; Huang TJ
    Sci Adv; 2022 Apr; 8(13):eabm2592. PubMed ID: 35363512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Lab Chip; 2023 Mar; 23(7):1865-1878. PubMed ID: 36852544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submicron Particle Concentration and Patterning with Ultralow Frequency Acoustic Vibration.
    Zhou Y; Ma Z; Ai Y
    Anal Chem; 2020 Oct; 92(19):12795-12800. PubMed ID: 32894949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustofluidic manipulation for submicron to nanoparticles.
    Wei W; Wang Z; Wang B; He X; Wang Y; Bai Y; Yang Q; Pang W; Duan X
    Electrophoresis; 2024 May; ():. PubMed ID: 38794970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Particle Aggregation and Separation in Acoustofluidic Microchannels Driven by Standing Lamb Waves.
    Hsu JC; Chang CY
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of 2D Acoustofluidic Fields in an Ultrasonic Cavity Generated by Multiple Vibration Sources.
    Tang Q; Zhou S; Huang L; Chen Z
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31766721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation into the Effect of Acoustic Radiation Force and Acoustic Streaming on Particle Patterning in Acoustic Standing Wave Fields.
    Liu S; Yang Y; Ni Z; Guo X; Luo L; Tu J; Zhang D; Zhang AJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28753955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustofluidic Holography for Micro- to Nanoscale Particle Manipulation.
    Gu Y; Chen C; Rufo J; Shen C; Wang Z; Huang PH; Fu H; Zhang P; Cummer SA; Tian Z; Huang TJ
    ACS Nano; 2020 Nov; 14(11):14635-14645. PubMed ID: 32574491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustofluidic centrifuge for nanoparticle enrichment and separation.
    Gu Y; Chen C; Mao Z; Bachman H; Becker R; Rufo J; Wang Z; Zhang P; Mai J; Yang S; Zhang J; Zhao S; Ouyang Y; Wong DTW; Sadovsky Y; Huang TJ
    Sci Adv; 2021 Jan; 7(1):. PubMed ID: 33523836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles.
    Hahn P; Leibacher I; Baasch T; Dual J
    Lab Chip; 2015 Nov; 15(22):4302-13. PubMed ID: 26448531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics.
    Bian Y; Guo F; Yang S; Mao Z; Bachman H; Tang SY; Ren L; Zhang B; Gong J; Guo X; Huang TJ
    Microfluid Nanofluidics; 2017 Aug; 21():. PubMed ID: 29358901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator.
    Vachon P; Merugu S; Sharma J; Lal A; Ng EJ; Koh Y; Lee JE; Lee C
    Microsyst Nanoeng; 2024; 10():33. PubMed ID: 38463549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration of Microparticles Using Flexural Acoustic Wave in Sessile Droplets.
    Peng T; Li L; Zhou M; Jiang F
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35162014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustofluidic particle trapping, manipulation, and release using dynamic-mode cantilever sensors.
    Johnson BN; Mutharasan R
    Analyst; 2016 Dec; 142(1):123-131. PubMed ID: 27878146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustofluidic particle manipulation inside a sessile droplet: four distinct regimes of particle concentration.
    Destgeer G; Cho H; Ha BH; Jung JH; Park J; Sung HJ
    Lab Chip; 2016 Feb; 16(4):660-7. PubMed ID: 26755271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells.
    Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A
    ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexural wave-based soft attractor walls for trapping microparticles and cells.
    Aghakhani A; Cetin H; Erkoc P; Tombak GI; Sitti M
    Lab Chip; 2021 Feb; 21(3):582-596. PubMed ID: 33355319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.