These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35363803)

  • 1. Evaluation the possibility of vortex-induced resonance for a multistage pressure reducing valve.
    Xu D; Ge C; Li Y; Liu Y
    PLoS One; 2022; 17(4):e0266414. PubMed ID: 35363803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of vortices in cavitation formation in the flow across a mechanical heart valve.
    Li CP; Lu PC; Liu JS; Lo CW; Hwang NH
    J Heart Valve Dis; 2008 Jul; 17(4):435-45. PubMed ID: 18751474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of vortices in cavitation formation in the flow at the closure of a bileaflet mitral mechanical heart valve.
    Li CP; Chen SF; Lo CW; Lu PC
    J Artif Organs; 2012 Mar; 15(1):57-64. PubMed ID: 22015913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding.
    Huang ZJ; Merkle CL; Abdallah S; Tarbell JM
    J Biomech; 1994 Apr; 27(4):391-402. PubMed ID: 8188720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The low frequency pressure pulsation and control of the open-jet wind tunnel.
    Hu X; Luo Y; Leng J; Guo P; Yu T; Wang J
    Sci Rep; 2022 Nov; 12(1):19090. PubMed ID: 36351978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the Mechanism and Parametric Description of Non-Synchronous Blade Vibration.
    Zhang M; Hou A; Han Y
    Entropy (Basel); 2021 Mar; 23(4):. PubMed ID: 33804937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on the Flow Field Entropy Structure of Non-Synchronous Blade Vibration in an Axial Turbocompressor.
    Zhang M; Hou A
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33279917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region.
    Borazjani I; Sotiropoulos F
    J Fluid Mech; 2009; 621():321-364. PubMed ID: 19693281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can vortices in the flow across mechanical heart valves contribute to cavitation?
    Avrahami I; Rosenfeld M; Einav S; Eichler M; Reul H
    Med Biol Eng Comput; 2000 Jan; 38(1):93-7. PubMed ID: 10829397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.
    Rambod E; Beizai M; Sahn DJ; Gharib M
    Ann Biomed Eng; 2007 Jul; 35(7):1131-45. PubMed ID: 17404890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength-induced shedding frequency modulation of seal whisker inspired cylinders.
    Dunt TK; Heck KS; Lyons K; Murphy CT; Bayoán Cal R; Franck JA
    Bioinspir Biomim; 2024 Mar; 19(3):. PubMed ID: 38377615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.
    Liangjie M; Qingyou L; Shouwei Z
    PLoS One; 2014; 9(8):e104806. PubMed ID: 25118607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure and flow fields in the hinge region of bileaflet mechanical heart valves.
    Gao ZB; Hosein N; Dai FF; Hwang NH
    J Heart Valve Dis; 1999 Mar; 8(2):197-205. PubMed ID: 10224581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid-solid-heat coupling deformation analysis of the valve trims in a multistage pressure reducing valve.
    Xu D; Ge C; Li Y; Liu Y
    PLoS One; 2022; 17(1):e0263076. PubMed ID: 35077526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitral heart valve cavitation in an artificial heart environment.
    Sneckenberger DS; Stinebring DR; Deutsch S; Geselowitz DB; Tarbell JM
    J Heart Valve Dis; 1996 Mar; 5(2):216-27. PubMed ID: 8665017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Note: anti-strong-disturbance signal processing method of vortex flowmeter with two sensors.
    Xu KJ; Luo QL; Fang M; Wang G; Liu SS; Kang YB; Shi L
    Rev Sci Instrum; 2011 Sep; 82(9):096105. PubMed ID: 21974632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on Vortex-Induced Vibration Experiment of a Standing Variable-Tension Deepsea Riser Based on BFBG Sensor Technology.
    Li P; Cong A; Dong Z; Wang Y; Liu Y; Guo H; Li X; Fu Q
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental study of the cavitation noise and vibration induced by the choked flow in a Venturi reactor.
    Xu S; Wang J; Cheng H; Ji B; Long X
    Ultrason Sonochem; 2020 Oct; 67():105183. PubMed ID: 32474184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of cavitation and the formation of stable bubbles on the Björk-Shiley Monostrut prosthetic heart valve.
    Bachmann C; Kini V; Deutsch S; Fontaine AA; Tarbell JM
    J Heart Valve Dis; 2002 Jan; 11(1):105-13. PubMed ID: 11843495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy dynamics of the intraventricular vortex after mitral valve surgery.
    Nakashima K; Itatani K; Kitamura T; Oka N; Horai T; Miyazaki S; Nie M; Miyaji K
    Heart Vessels; 2017 Sep; 32(9):1123-1129. PubMed ID: 28389690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.