These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35364049)

  • 1. Commentary on "Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria".
    Cadenas E
    Arch Biochem Biophys; 2022 Mar; 721():109197. PubMed ID: 35364049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On 'Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria' by Enrique Cadenas, Alberto Boveris, C. Ian Ragan and Andres O.M.Stoppani.
    Cadenas E
    Arch Biochem Biophys; 2022 Sep; 726():109214. PubMed ID: 35483432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria.
    Cadenas E; Boveris A; Ragan CI; Stoppani AO
    Arch Biochem Biophys; 1977 Apr; 180(2):248-57. PubMed ID: 195520
    [No Abstract]   [Full Text] [Related]  

  • 4. Reprint of: Production of Superoxide Radicals and Hydrogen Peroxide by NADH- Ubiquinone Reductase and Ubiquinol-Cytochrome c Reductase from Beef-Heart Mitochondria.
    Cadenas E; Boveris A; Ian Ragan C; O M Stoppani A
    Arch Biochem Biophys; 2022 Sep; 726():109231. PubMed ID: 35660298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation.
    Riobó NA; Clementi E; Melani M; Boveris A; Cadenas E; Moncada S; Poderoso JJ
    Biochem J; 2001 Oct; 359(Pt 1):139-45. PubMed ID: 11563977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hematoporphyrin-promoted photoinactivation of mitochondrial ubiquinol-cytochrome c reductase: selective destruction of the histidine ligands of the iron-sulfur cluster and protective effect of ubiquinone.
    Miki T; Yu L; Yu CA
    Biochemistry; 1991 Jan; 30(1):230-8. PubMed ID: 1846289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide.
    Boveris A; Cadenas E; Stoppani AO
    Biochem J; 1976 May; 156(2):435-44. PubMed ID: 182149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dicyclohexylcarbodiimide inhibition of succinate- and ubiquinol-cytochrome c reductase in beef heart mitochondria.
    Degli Esposti M; Parenti-Castelli G; Lenaz G
    Ital J Biochem; 1981; 30(6):453-63. PubMed ID: 6277826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Gwak SH; Yu L; Yu CA
    Biochemistry; 1986 Nov; 25(23):7675-82. PubMed ID: 3026458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex.
    González-Flecha B; Boveris A
    Biochim Biophys Acta; 1995 Apr; 1243(3):361-6. PubMed ID: 7727510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible role of the NADH-fumarate reductase in superoxide anion and hydrogen peroxide production in Trypanosoma brucei.
    Turrens JF
    Mol Biochem Parasitol; 1987 Aug; 25(1):55-60. PubMed ID: 2823135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of nitric oxide on electron transport complexes.
    Welter R; Yu L; Yu CA
    Arch Biochem Biophys; 1996 Jul; 331(1):9-14. PubMed ID: 8660677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates.
    Siebels I; Dröse S
    Biochim Biophys Acta; 2013 Oct; 1827(10):1156-64. PubMed ID: 23800966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative resolution of succinate-cytochrome c reductase into succinate-ubiquinone and ubiquinol-cytochrome c reductases.
    Yu L; Yu CA
    J Biol Chem; 1982 Feb; 257(4):2016-21. PubMed ID: 6276404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways.
    Staniek K; Gille L; Kozlov AV; Nohl H
    Free Radic Res; 2002 Apr; 36(4):381-7. PubMed ID: 12069101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of substituents of the benzoquinone ring on electron-transfer activities of ubiquinone derivatives.
    Gu LQ; Yu L; Yu CA
    Biochim Biophys Acta; 1990 Feb; 1015(3):482-92. PubMed ID: 2154255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADH-Ubiquinone oxidoreductase: substrate-dependent oxygen turnover to superoxide anion as a function of flavin mononucleotide.
    Johnson JE; Choksi K; Widger WR
    Mitochondrion; 2003 Oct; 3(2):97-110. PubMed ID: 16120348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oxidation of ubiquinol by the isolated Rieske iron-sulfur protein in solution.
    DegliEsposti M; Ballester F; Timoneda J; Crimi M; Lenaz G
    Arch Biochem Biophys; 1990 Dec; 283(2):258-65. PubMed ID: 2177322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunological studies on beef-heart ubiquinol--cytochrome c reductase (complex III).
    Nelson BD; Mendel-Hartvig I
    Eur J Biochem; 1977 Oct; 80(1):267-74. PubMed ID: 411653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling.
    Brand MD
    Free Radic Biol Med; 2016 Nov; 100():14-31. PubMed ID: 27085844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.