These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35364072)

  • 1. D-serine metabolism in the medial prefrontal cortex, but not the hippocampus, is involved in AD/HD-like behaviors in SHRSP/Ezo.
    Shindo T; Shikanai H; Watarai A; Hiraide S; Iizuka K; Izumi T
    Eur J Pharmacol; 2022 May; 923():174930. PubMed ID: 35364072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-methyl-d-aspartate receptor dysfunction in the prefrontal cortex of stroke-prone spontaneously hypertensive rat/Ezo as a rat model of attention deficit/hyperactivity disorder.
    Shikanai H; Oshima N; Kawashima H; Kimura SI; Hiraide S; Togashi H; Iizuka K; Ohkura K; Izumi T
    Neuropsychopharmacol Rep; 2018 Jun; 38(2):61-66. PubMed ID: 30106260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired monoamine neural system in the mPFC of SHRSP/Ezo as an animal model of attention-deficit/hyperactivity disorder.
    Suzuki N; Hiraide S; Shikanai H; Isshiki T; Yamaguchi T; Izumi T; Iizuka K
    J Pharmacol Sci; 2024 Feb; 154(2):61-71. PubMed ID: 38246729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberrant CaMKII activity in the medial prefrontal cortex is associated with cognitive dysfunction in ADHD model rats.
    Yabuki Y; Shioda N; Maeda T; Hiraide S; Togashi H; Fukunaga K
    Brain Res; 2014 Apr; 1557():90-100. PubMed ID: 24561222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Behavioral and pharmacological studies of juvenile stroke-prone spontaneously hypertensive rats as an animal model of attention-deficit/hyperactivity disorder].
    Ueno K; Togashi H; Yoshioka M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2003 Feb; 23(1):47-55. PubMed ID: 12690641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioural effects of monoamine reuptake inhibitors on symptomatic domains in an animal model of attention-deficit/hyperactivity disorder.
    Hiraide S; Ueno K; Yamaguchi T; Matsumoto M; Yanagawa Y; Yoshioka M; Togashi H
    Pharmacol Biochem Behav; 2013 Apr; 105():89-97. PubMed ID: 23380523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serine racemase expression profile in the prefrontal cortex and hippocampal subregions during aging in male and female rats.
    Bean L; Bose PK; Rani A; Kumar A
    Aging (Albany NY); 2024 May; 16(10):8402-8416. PubMed ID: 38761177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of regional cerebral blood flow and expression of angiogenic growth factors in the frontal cortex of juvenile male SHRSP and SHR.
    Jesmin S; Togashi H; Mowa CN; Ueno K; Yamaguchi T; Shibayama A; Miyauchi T; Sakuma I; Yoshioka M
    Brain Res; 2004 Dec; 1030(2):172-82. PubMed ID: 15571667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gonadal hormones and frontocortical expression of vascular endothelial growth factor in male stroke-prone, spontaneously hypertensive rats, a model for attention-deficit/hyperactivity disorder.
    Jesmin S; Togashi H; Sakuma I; Mowa CN; Ueno K; Yamaguchi T; Yoshioka M; Kitabatake A
    Endocrinology; 2004 Sep; 145(9):4330-43. PubMed ID: 15178644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioural and pharmacological relevance of stroke-prone spontaneously hypertensive rats as an animal model of a developmental disorder.
    Ueno KI; Togashi H; Mori K; Matsumoto M; Ohashi S; Hoshino A; Fujita T; Saito H; Minami M; Yoshioka M
    Behav Pharmacol; 2002 Feb; 13(1):1-13. PubMed ID: 11990715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative regional cerebral blood flow MRI of animal model of attention-deficit/hyperactivity disorder.
    Danker JF; Duong TQ
    Brain Res; 2007 May; 1150():217-24. PubMed ID: 17391651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA receptor function in the prefrontal cortex of a rat model for attention-deficit hyperactivity disorder.
    Lehohla M; Kellaway L; Russell VA
    Metab Brain Dis; 2004 Jun; 19(1-2):35-42. PubMed ID: 15214504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of dopaminergic neurotransmission in the medial prefrontal cortex by N-methyl-d-aspartate stimulation of the ventral hippocampus in rats.
    Peleg-Raibstein D; Pezze MA; Ferger B; Zhang WN; Murphy CA; Feldon J; Bast T
    Neuroscience; 2005; 132(1):219-32. PubMed ID: 15780480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of D-serine and D-alanine Tissue Levels in the Prefrontal Cortex and Hippocampus of Rats After a Single Dose of Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, with Potential Antipsychotic and Antidepressant Properties.
    Huang CC; Wei IH; Yang HT; Lane HY
    Neurochem Res; 2023 Jul; 48(7):2066-2076. PubMed ID: 36786942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention deficit induced by blockade of N-methyl D-aspartate receptors in the prefrontal cortex is associated with enhanced glutamate release and cAMP response element binding protein phosphorylation: role of metabotropic glutamate receptors 2/3.
    Pozzi L; Baviera M; Sacchetti G; Calcagno E; Balducci C; Invernizzi RW; Carli M
    Neuroscience; 2011 Mar; 176():336-48. PubMed ID: 21193020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upregulation of Glutamatergic Receptors in Hippocampus and Locomotor Hyperactivity in Aged Spontaneous Hypertensive Rat.
    Yen PS; Liu YC; Chu CH; Chen SL
    Cell Mol Neurobiol; 2022 Oct; 42(7):2205-2217. PubMed ID: 33954807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is endogenous D-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect?
    Ren WH; Guo JD; Cao H; Wang H; Wang PF; Sha H; Ji RR; Zhao ZQ; Zhang YQ
    J Neurochem; 2006 Mar; 96(6):1636-47. PubMed ID: 16476080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMDA receptors in the medial prefrontal cortex and the dorsal hippocampus regulate methamphetamine-induced hyperactivity and extracellular amino acid release in mice.
    Han W; Wang F; Qi J; Wang F; Zhang L; Zhao S; Song M; Wu C; Yang J
    Behav Brain Res; 2012 Jun; 232(1):44-52. PubMed ID: 22808522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model.
    Sershen H; Hashim A; Dunlop DS; Suckow RF; Cooper TB; Javitt DC
    Neurochem Res; 2016 Feb; 41(1-2):398-408. PubMed ID: 26857796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early life esophageal acid exposure reduces expression of NMDAR1 in the adult rat dorsal hippocampus and medial prefrontal cortex: Potential relationship with hyperlocomotion.
    Zhang WF; Wang X; Wang K; Duan LP
    J Dig Dis; 2018 Aug; 19(8):485-497. PubMed ID: 30058264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.