These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 35364105)

  • 1. RNA at the surface of phase-separated condensates impacts their size and number.
    Cochard A; Garcia-Jove Navarro M; Piroska L; Kashida S; Kress M; Weil D; Gueroui Z
    Biophys J; 2022 May; 121(9):1675-1690. PubMed ID: 35364105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Condensate functionalization with microtubule motors directs their nucleation in space and allows manipulating RNA localization.
    Cochard A; Safieddine A; Combe P; Benassy MN; Weil D; Gueroui Z
    EMBO J; 2023 Oct; 42(20):e114106. PubMed ID: 37724036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently.
    Sanchez-Burgos I; Herriott L; Collepardo-Guevara R; Espinosa JR
    Biophys J; 2023 Jul; 122(14):2973-2987. PubMed ID: 36883003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates.
    Welsh TJ; Krainer G; Espinosa JR; Joseph JA; Sridhar A; Jahnel M; Arter WE; Saar KL; Alberti S; Collepardo-Guevara R; Knowles TPJ
    Nano Lett; 2022 Jan; 22(2):612-621. PubMed ID: 35001622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. More than a bystander: RNAs specify multifaceted behaviors of liquid-liquid phase-separated biomolecular condensates.
    Zheng H; Zhang H
    Bioessays; 2024 Mar; 46(3):e2300203. PubMed ID: 38175843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long noncoding RNA and phase separation in cellular stress response.
    Onoguchi-Mizutani R; Akimitsu N
    J Biochem; 2022 Mar; 171(3):269-276. PubMed ID: 35080597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between Short-Range Attraction and Long-Range Repulsion Controls Reentrant Liquid Condensation of Ribonucleoprotein-RNA Complexes.
    Alshareedah I; Kaur T; Ngo J; Seppala H; Kounatse LD; Wang W; Moosa MM; Banerjee PR
    J Am Chem Soc; 2019 Sep; 141(37):14593-14602. PubMed ID: 31437398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic particle unbinding modulates growth dynamics and size of transcription factor condensates in living cells.
    Muñoz-Gil G; Romero-Aristizabal C; Mateos N; Campelo F; de Llobet Cucalon LI; Beato M; Lewenstein M; Garcia-Parajo MF; Torreno-Pina JA
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2200667119. PubMed ID: 35881789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micellization: A new principle in the formation of biomolecular condensates.
    Yamazaki T; Yamamoto T; Hirose T
    Front Mol Biosci; 2022; 9():974772. PubMed ID: 36106018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Protein Condensates That Inducibly Recruit and Release Protein Activity in Living Cells.
    Yoshikawa M; Yoshii T; Ikuta M; Tsukiji S
    J Am Chem Soc; 2021 May; 143(17):6434-6446. PubMed ID: 33890764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using quantitative reconstitution to investigate multicomponent condensates.
    Currie SL; Rosen MK
    RNA; 2022 Jan; 28(1):27-35. PubMed ID: 34772789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA is a critical element for the sizing and the composition of phase-separated RNA-protein condensates.
    Garcia-Jove Navarro M; Kashida S; Chouaib R; Souquere S; Pierron G; Weil D; Gueroui Z
    Nat Commun; 2019 Jul; 10(1):3230. PubMed ID: 31324804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valency and Binding Affinity Variations Can Regulate the Multilayered Organization of Protein Condensates with Many Components.
    Sanchez-Burgos I; Espinosa JR; Joseph JA; Collepardo-Guevara R
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33672806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Inhomogeneous Diffusion in the Microenvironments of Phase-Separated Polymers under Confinement.
    Shayegan M; Tahvildari R; Metera K; Kisley L; Michnick SW; Leslie SR
    J Am Chem Soc; 2019 May; 141(19):7751-7757. PubMed ID: 31017394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational Freedom and Topological Confinement of Proteins in Biomolecular Condensates.
    Scholl D; Deniz AA
    J Mol Biol; 2022 Jan; 434(1):167348. PubMed ID: 34767801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling compartmentalization by non-membrane-bound organelles.
    Wheeler RJ; Hyman AA
    Philos Trans R Soc Lond B Biol Sci; 2018 May; 373(1747):. PubMed ID: 29632271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-free reconstitution of multi-condensate assemblies.
    Putnam A; Seydoux G
    Methods Enzymol; 2021; 646():83-113. PubMed ID: 33453934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Higher-order organization of biomolecular condensates.
    Fare CM; Villani A; Drake LE; Shorter J
    Open Biol; 2021 Jun; 11(6):210137. PubMed ID: 34129784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein Condensate Atlas from predictive models of heteromolecular condensate composition.
    Saar KL; Scrutton RM; Bloznelyte K; Morgunov AS; Good LL; Lee AA; Teichmann SA; Knowles TPJ
    Nat Commun; 2024 Jul; 15(1):5418. PubMed ID: 38987300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modular tool to query and inducibly disrupt biomolecular condensates.
    Hernández-Candia CN; Pearce S; Tucker CL
    Nat Commun; 2021 Mar; 12(1):1809. PubMed ID: 33753744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.