These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 35364162)

  • 41. China's transboundary waters: new paradigms for water and ecological security through applied ecology.
    He D; Wu R; Feng Y; Li Y; Ding C; Wang W; Yu DW
    J Appl Ecol; 2014 Oct; 51(5):1159-1168. PubMed ID: 25558084
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China.
    Gao JH; Jia J; Kettner AJ; Xing F; Wang YP; Xu XN; Yang Y; Zou XQ; Gao S; Qi S; Liao F
    Sci Total Environ; 2014 May; 481():542-53. PubMed ID: 24631617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Planning dam portfolios for low sediment trapping shows limits for sustainable hydropower in the Mekong.
    Schmitt RJP; Bizzi S; Castelletti A; Opperman JJ; Kondolf GM
    Sci Adv; 2019 Oct; 5(10):eaaw2175. PubMed ID: 32047852
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok).
    Trang NTT; Shrestha S; Shrestha M; Datta A; Kawasaki A
    Sci Total Environ; 2017 Jan; 576():586-598. PubMed ID: 27810747
    [TBL] [Abstract][Full Text] [Related]  

  • 45. National framework for ranking lakes by potential for anthropogenic hydro-alteration.
    Fergus CE; Brooks JR; Kaufmann PR; Pollard AI; Herlihy AT; Paulsen SG; Weber MH
    Ecol Indic; 2021 Jan; 122():. PubMed ID: 33897301
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Water level response to hydropower development in the upper Mekong River.
    Li S; He D
    Ambio; 2008 May; 37(3):170-7. PubMed ID: 18595271
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Impacts of hydrological alteration on ecosystem services changes of a large river-connected lake (Poyang Lake), China.
    Li B; Yang G; Wan R; Lai X; Wagner PD
    J Environ Manage; 2022 May; 310():114750. PubMed ID: 35189555
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Designing river flows to improve food security futures in the Lower Mekong Basin.
    Sabo JL; Ruhi A; Holtgrieve GW; Elliott V; Arias ME; Ngor PB; Räsänen TA; Nam S
    Science; 2017 Dec; 358(6368):. PubMed ID: 29217541
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantifying the impacts of a proposed hydraulic dam on groundwater flow behaviors and its eco-environmental implications in the large Poyang Lake-floodplain system.
    Li Y; Cao S; Yu L; Yao J; Lu J
    J Environ Manage; 2023 Jun; 336():117654. PubMed ID: 36870320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Groundwater dynamics of a lake-floodplain system: Role of groundwater flux in lake water storage subject to seasonal inundation.
    Song Y; Zhang Q; Melack JM; Li Y
    Sci Total Environ; 2023 Jan; 857(Pt 2):159414. PubMed ID: 36244485
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coupled CH
    Miller BL; Holtgrieve GW; Arias ME; Uy S; Chheng P
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35165188
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Managing fish, flood plains and food security in the Lower Mekong Basin.
    Jensen JG
    Water Sci Technol; 2001; 43(9):157-64. PubMed ID: 11419123
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Massive tree mortality from flood pulse disturbances in Amazonian floodplain forests: The collateral effects of hydropower production.
    Resende AF; Schöngart J; Streher AS; Ferreira-Ferreira J; Piedade MTF; Silva TSF
    Sci Total Environ; 2019 Apr; 659():587-598. PubMed ID: 31096388
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for population genetic structure in two exploited Mekong River fishes across a natural riverine barrier.
    Biesack EE; Dang BT; Ackiss AS; Bird CE; Chheng P; Phounvisouk L; Truong OT; Carpenter KE
    J Fish Biol; 2020 Sep; 97(3):696-707. PubMed ID: 32557668
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A flood of models: Mekong ecologies of comparison.
    Jensen CB
    Soc Stud Sci; 2020 Feb; 50(1):76-93. PubMed ID: 31537152
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Environmental impacts of a reduced flow stretch on hydropower plants.
    Souza-Cruz-Buenaga FVA; Espig SA; Castro TLC; Santos MA
    Braz J Biol; 2019; 79(3):470-487. PubMed ID: 30304254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Future projections of flood dynamics in the Vietnamese Mekong Delta.
    Triet NVK; Dung NV; Hoang LP; Duy NL; Tran DD; Anh TT; Kummu M; Merz B; Apel H
    Sci Total Environ; 2020 Nov; 742():140596. PubMed ID: 33167297
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Response to Comments on "Designing river flows to improve food security futures in the Lower Mekong Basin".
    Holtgrieve GW; Arias ME; Ruhi A; Elliott V; Nam S; Ngor PB; Räsänen TA; Sabo JL
    Science; 2018 Jul; 361(6398):. PubMed ID: 30002227
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Variable-source flood pulsing in a semi-arid transboundary watershed: the Chobe River, Botswana and Namibia.
    Pricope NG
    Environ Monit Assess; 2013 Feb; 185(2):1883-906. PubMed ID: 22572801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reservoir Regulation for Ecological Protection and Remediation: A Case Study of the Irtysh River Basin, China.
    Wang D; Zhang S; Wang G; Liu Y; Wang H; Gu J
    Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141858
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.