These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 35364194)
1. The coupling effect of cellulose nanocrystal and strong shear field achieved the strength and toughness balance of Polylactide. Wu JJ; Gao N; Jiang L; Zhong GJ; Deng C; Gao X Int J Biol Macromol; 2022 May; 207():927-940. PubMed ID: 35364194 [TBL] [Abstract][Full Text] [Related]
2. Interfacial Shish-Kebabs Lengthened by Coupling Effect of In Situ Flexible Nanofibrils and Intense Shear Flow: Achieving Hierarchy To Conquer the Conflicts between Strength and Toughness of Polylactide. Zhou SY; Niu B; Xie XL; Ji X; Zhong GJ; Hsiao BS; Li ZM ACS Appl Mater Interfaces; 2017 Mar; 9(11):10148-10159. PubMed ID: 28252280 [TBL] [Abstract][Full Text] [Related]
3. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends. Zhang X; Zhang Y Carbohydr Polym; 2016 Apr; 140():374-82. PubMed ID: 26876864 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of PLA crystallization, transparency, and strength by adding the long aliphatic chains grafted CNC. Shi H; Jiang X; Liu G; Ma B; Lv Y; Xu P; Ma P; Zhang X; Liu T Int J Biol Macromol; 2024 Jun; 270(Pt 1):132223. PubMed ID: 38777688 [TBL] [Abstract][Full Text] [Related]
5. In-situ formation of thermo-responsive petal-like cellulose nanocrystals hybridized particles towards optimizing mechanical, rheological and dielectric properties of polylactic acid blends. Cheng B; Yan S; Chu W; Yang S; Zheng L; Tan Y; Yin X Int J Biol Macromol; 2023 Dec; 253(Pt 1):126470. PubMed ID: 37625750 [TBL] [Abstract][Full Text] [Related]
6. Effects of molecular weight and crystallizability of polylactide on the cellulose nanocrystal dispersion quality in their nanocomposites. Vatansever E; Arslan D; Sarul DS; Kahraman Y; Nofar M Int J Biol Macromol; 2020 Jul; 154():276-290. PubMed ID: 32184137 [TBL] [Abstract][Full Text] [Related]
7. Effect of polymorphs of cellulose nanocrystal on the thermal properties of poly(lactic acid)/cellulose nanocrystal composites. Zhao J; Zhao Y; Wang Z; Peng Z Eur Phys J E Soft Matter; 2016 Dec; 39(12):118. PubMed ID: 27928643 [TBL] [Abstract][Full Text] [Related]
9. Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites. Monika ; Dhar P; Katiyar V Int J Biol Macromol; 2017 Nov; 104(Pt A):827-836. PubMed ID: 28648639 [TBL] [Abstract][Full Text] [Related]
10. Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties. Zhang Y; Cui L; Xu H; Feng X; Wang B; Pukánszky B; Mao Z; Sui X Int J Biol Macromol; 2019 Sep; 137():197-204. PubMed ID: 31255621 [TBL] [Abstract][Full Text] [Related]
11. Sulfonated cellulose nanocrystal modified with ammonium salt as reinforcement in poly(lactic acid) composite films. Liang G; Zong Y; Zou Y; Pang X; Zeng W; Zhu J; Yang S; Zhu Y Int J Biol Macromol; 2024 Mar; 261(Pt 1):129673. PubMed ID: 38281528 [TBL] [Abstract][Full Text] [Related]
12. Thermal degradation behaviour and crystallization kinetics of poly (lactic acid) and cellulose nanocrystals (CNC) based microcellular composite foams. Borkotoky SS; Chakraborty G; Katiyar V Int J Biol Macromol; 2018 Oct; 118(Pt B):1518-1531. PubMed ID: 29981330 [TBL] [Abstract][Full Text] [Related]
13. In-situ constructing highly oriented ductile poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoribbons: Towards strong, ductile, and good heat-resistant polylactic-based composites. Liu P; Chen J; Zhang Y; Li C; Wu H; Guo S Int J Biol Macromol; 2022 Sep; 216():213-224. PubMed ID: 35777516 [TBL] [Abstract][Full Text] [Related]
15. Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Bai H; Huang C; Xiu H; Zhang Q; Deng H; Wang K; Chen F; Fu Q Biomacromolecules; 2014 Apr; 15(4):1507-14. PubMed ID: 24617940 [TBL] [Abstract][Full Text] [Related]
16. Enhancing long-term biodegradability and UV-shielding performances of transparent polylactic acid nanocomposite films by adding cellulose nanocrystal-zinc oxide hybrids. Wang YY; Yu HY; Yang L; Abdalkarim SYH; Chen WL Int J Biol Macromol; 2019 Dec; 141():893-905. PubMed ID: 31518619 [TBL] [Abstract][Full Text] [Related]
17. Performance Enhancement of PLA-Based Blend Microneedle Arrays through Shish-Kebab Structuring Strategy in Microinjection Molding. Zhang L; Chen Y; Tan J; Feng S; Xie Y; Li L Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242809 [TBL] [Abstract][Full Text] [Related]
18. PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Lizundia E; Fortunati E; Dominici F; Vilas JL; León LM; Armentano I; Torre L; Kenny JM Carbohydr Polym; 2016 May; 142():105-13. PubMed ID: 26917380 [TBL] [Abstract][Full Text] [Related]
19. Effect of surface modification of cellulose nanocrystal on nonisothermal crystallization of poly(β-hydroxybutyrate) composites. Chen J; Wu D; Tam KC; Pan K; Zheng Z Carbohydr Polym; 2017 Feb; 157():1821-1829. PubMed ID: 27987900 [TBL] [Abstract][Full Text] [Related]
20. Structural Hierarchy and Polymorphic Transformation in Shear-Induced Shish-Kebab of Stereocomplex Poly(Lactic Acid). Xie L; Xu H; Li ZM; Hakkarainen M Macromol Rapid Commun; 2016 May; 37(9):745-51. PubMed ID: 26987565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]