These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 35364203)

  • 41. Nanocellulose for Paper and Textile Coating: The Importance of Surface Chemistry.
    Spagnuolo L; D'Orsi R; Operamolla A
    Chempluschem; 2022 Aug; 87(8):e202200204. PubMed ID: 36000154
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carboxymethyl cellulose-based materials for infection control and wound healing: A review.
    Kanikireddy V; Varaprasad K; Jayaramudu T; Karthikeyan C; Sadiku R
    Int J Biol Macromol; 2020 Dec; 164():963-975. PubMed ID: 32707282
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pretreatment-dependent surface chemistry of wood nanocellulose for pH-sensitive hydrogels.
    Chinga-Carrasco G; Syverud K
    J Biomater Appl; 2014 Sep; 29(3):423-32. PubMed ID: 24713295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanocellulose: From an agricultural waste to a valuable pharmaceutical ingredient.
    Kamel R; El-Wakil NA; Dufresne A; Elkasabgy NA
    Int J Biol Macromol; 2020 Nov; 163():1579-1590. PubMed ID: 32755697
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing.
    Bacakova L; Pajorova J; Bacakova M; Skogberg A; Kallio P; Kolarova K; Svorcik V
    Nanomaterials (Basel); 2019 Jan; 9(2):. PubMed ID: 30699947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-Modified Nanocellulose for Application in Biomedical Engineering and Nanomedicine: A Review.
    Tortorella S; Vetri Buratti V; Maturi M; Sambri L; Comes Franchini M; Locatelli E
    Int J Nanomedicine; 2020; 15():9909-9937. PubMed ID: 33335392
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cellulose nanocrystals: a versatile nanoplatform for emerging biomedical applications.
    Sunasee R; Hemraz UD; Ckless K
    Expert Opin Drug Deliv; 2016 Sep; 13(9):1243-56. PubMed ID: 27110733
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biotech nanocellulose: A review on progress in product design and today's state of technical and medical applications.
    Klemm D; Petzold-Welcke K; Kramer F; Richter T; Raddatz V; Fried W; Nietzsche S; Bellmann T; Fischer D
    Carbohydr Polym; 2021 Feb; 254():117313. PubMed ID: 33357876
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates.
    Zander NE; Dong H; Steele J; Grant JT
    ACS Appl Mater Interfaces; 2014; 6(21):18502-10. PubMed ID: 25295848
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multifunctional nanocellulose/metal and metal oxide nanoparticle hybrid nanomaterials.
    Oun AA; Shankar S; Rhim JW
    Crit Rev Food Sci Nutr; 2020; 60(3):435-460. PubMed ID: 31131614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application.
    Wang X; Cheng F; Liu J; Smått JH; Gepperth D; Lastusaari M; Xu C; Hupa L
    Acta Biomater; 2016 Dec; 46():286-298. PubMed ID: 27646503
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradation of Functionalized Nanocellulose.
    Frank BP; Smith C; Caudill ER; Lankone RS; Carlin K; Benware S; Pedersen JA; Fairbrother DH
    Environ Sci Technol; 2021 Aug; 55(15):10744-10757. PubMed ID: 34282891
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using in situ nanocellulose-coating technology based on dynamic bacterial cultures for upgrading conventional biomedical materials and reinforcing nanocellulose hydrogels.
    Zhang P; Chen L; Zhang Q; Jönsson LJ; Hong FF
    Biotechnol Prog; 2016 Jul; 32(4):1077-84. PubMed ID: 27088548
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Nanocellulose in the food industry and medicine: structure, production and application].
    Gmoshinski IV; Shipelin VA; Khotimchenko SA
    Vopr Pitan; 2022; 91(3):6-20. PubMed ID: 35853186
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Multifunctional cellulose-based hydrogels for biomedical applications.
    Fu LH; Qi C; Ma MG; Wan P
    J Mater Chem B; 2019 Mar; 7(10):1541-1562. PubMed ID: 32254901
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanocelluloses as skin biocompatible materials for skincare, cosmetics, and healthcare: Formulations, regulations, and emerging applications.
    Meftahi A; Samyn P; Geravand SA; Khajavi R; Alibkhshi S; Bechelany M; Barhoum A
    Carbohydr Polym; 2022 Feb; 278():118956. PubMed ID: 34973772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nanocellulose-based hydrogels as versatile drug delivery vehicles: A review.
    He P; Dai L; Wei J; Zhu X; Li J; Chen Z; Ni Y
    Int J Biol Macromol; 2022 Dec; 222(Pt A):830-843. PubMed ID: 36179866
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nanocellulose, a versatile platform: From the delivery of active molecules to tissue engineering applications.
    Patil TV; Patel DK; Dutta SD; Ganguly K; Santra TS; Lim KT
    Bioact Mater; 2022 Mar; 9():566-589. PubMed ID: 34820589
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanocellulose/PEGDA aerogel scaffolds with tunable modulus prepared by stereolithography for three-dimensional cell culture.
    Tang A; Li J; Li J; Zhao S; Liu W; Liu T; Wang J; Liu Y
    J Biomater Sci Polym Ed; 2019 Jul; 30(10):797-814. PubMed ID: 30940007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomedical engineering aspects of nanocellulose: a review.
    Rai R; Dhar P
    Nanotechnology; 2022 Jun; 33(36):. PubMed ID: 35576914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.