BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35364221)

  • 41. Impact of Epigenetic Alterations in the Development of Oral Diseases.
    Emfietzoglou R; Pachymanolis E; Piperi C
    Curr Med Chem; 2021; 28(6):1091-1103. PubMed ID: 31942842
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications.
    Sigalotti L; Fratta E; Coral S; Cortini E; Covre A; Nicolay HJ; Anzalone L; Pezzani L; Di Giacomo AM; Fonsatti E; Colizzi F; Altomonte M; Calabrò L; Maio M
    J Cell Physiol; 2007 Aug; 212(2):330-44. PubMed ID: 17458893
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors.
    Shin DJ; Wang L
    Handb Exp Pharmacol; 2019; 256():51-72. PubMed ID: 31230143
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nuclear receptor expression defines a set of prognostic biomarkers for lung cancer.
    Jeong Y; Xie Y; Xiao G; Behrens C; Girard L; Wistuba II; Minna JD; Mangelsdorf DJ
    PLoS Med; 2010 Dec; 7(12):e1000378. PubMed ID: 21179495
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular biology of human oral cancer.
    Wong DT; Todd R; Tsuji T; Donoff RB
    Crit Rev Oral Biol Med; 1996; 7(4):319-28. PubMed ID: 8986394
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparable molecular alterations in 4-nitroquinoline 1-oxide-induced oral and esophageal cancer in mice and in human esophageal cancer, associated with poor prognosis of patients.
    Yang Z; Guan B; Men T; Fujimoto J; Xu X
    In Vivo; 2013; 27(4):473-84. PubMed ID: 23812217
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tumor necrosis factor-α induced protein 8 (TNFAIP8/TIPE) family is differentially expressed in oral cancer and regulates tumorigenesis through Akt/mTOR/STAT3 signaling cascade.
    Padmavathi G; Monisha J; Bordoloi D; Banik K; Roy NK; Girisa S; Singh AK; Longkumer I; Baruah MN; Kunnumakkara AB
    Life Sci; 2021 Dec; 287():120118. PubMed ID: 34740574
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insulin-Like Growth Factor 2 (IGF2) Signaling in Colorectal Cancer-From Basic Research to Potential Clinical Applications.
    Kasprzak A; Adamek A
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31623387
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Molecular determinants of gastrointestinal and liver cancers: role of bile acid activated nuclear receptors.
    Renga B; Mencarelli A; Cipriani S; Distrutti E
    Curr Top Med Chem; 2012; 12(6):625-36. PubMed ID: 22242858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genomic profiling in nuclear receptor-mediated toxicity.
    Woods CG; Heuvel JP; Rusyn I
    Toxicol Pathol; 2007 Jun; 35(4):474-94. PubMed ID: 17562482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Essential role of nuclear receptors for the evaluation of the benefits of bioactive herbal extracts on liver function.
    Wang F; Wu Y; Xie X; Sun J; Chen W
    Biomed Pharmacother; 2018 Mar; 99():798-809. PubMed ID: 29710478
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Classical nuclear hormone receptor activity as a mediator of complex biological responses: a look at health and disease.
    Yen PM
    Best Pract Res Clin Endocrinol Metab; 2015 Aug; 29(4):517-28. PubMed ID: 26303080
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of Machine Learning Methods in Predicting Nuclear Receptors and their Families.
    Zhang ZM; Guan ZX; Wang F; Zhang D; Ding H
    Med Chem; 2020; 16(5):594-604. PubMed ID: 31584374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.
    Foy JP; Tortereau A; Caulin C; Le Texier V; Lavergne E; Thomas E; Chabaud S; Perol D; Lachuer J; Lang W; Hong WK; Goudot P; Lippman SM; Bertolus C; Saintigny P
    Oncotarget; 2016 Jun; 7(24):35932-35945. PubMed ID: 27027432
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic and molecular alterations associated with oral squamous cell cancer (Review).
    Pérez-Sayáns M; Somoza-Martín JM; Barros-Angueira F; Reboiras-López MD; Gándara Rey JM; García-García A
    Oncol Rep; 2009 Dec; 22(6):1277-82. PubMed ID: 19885577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nuclear receptors: Lipid and hormone sensors with essential roles in the control of cancer development.
    Font-Díaz J; Jiménez-Panizo A; Caelles C; Vivanco MD; Pérez P; Aranda A; Estébanez-Perpiñá E; Castrillo A; Ricote M; Valledor AF
    Semin Cancer Biol; 2021 Aug; 73():58-75. PubMed ID: 33309851
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potential role of p21 Activated Kinase 1 (PAK1) in the invasion and motility of oral cancer cells.
    Parvathy M; Sreeja S; Kumar R; Pillai MR
    BMC Cancer; 2016 May; 16 Suppl 1(Suppl 1):293. PubMed ID: 27229476
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of gut microbiota in epigenetic regulation of colorectal Cancer.
    Zhao Y; Wang C; Goel A
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188490. PubMed ID: 33321173
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Non-coding RNA crosstalk with nuclear receptors in liver disease.
    Wu J; Nagy LE; Liangpunsakul S; Wang L
    Biochim Biophys Acta Mol Basis Dis; 2021 May; 1867(5):166083. PubMed ID: 33497819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression.
    Vigneswaran N; Baucum DC; Wu J; Lou Y; Bouquot J; Muller S; Zacharias W
    BMC Cancer; 2007 Jun; 7():108. PubMed ID: 17592646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.