BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 35364221)

  • 61. Nuclear Receptors as Autophagy-Based Antimicrobial Therapeutics.
    Silwal P; Paik S; Jeon SM; Jo EK
    Cells; 2020 Aug; 9(9):. PubMed ID: 32867365
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Epigenetic Regulation of the Biosynthesis & Enzymatic Modification of Heparan Sulfate Proteoglycans: Implications for Tumorigenesis and Cancer Biomarkers.
    Hull EE; Montgomery MR; Leyva KJ
    Int J Mol Sci; 2017 Jun; 18(7):. PubMed ID: 28672878
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Therapeutic potential of nuclear receptor agonists in Alzheimer's disease.
    Moutinho M; Landreth GE
    J Lipid Res; 2017 Oct; 58(10):1937-1949. PubMed ID: 28264880
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tumor-promoting properties of miR-8084 in breast cancer through enhancing proliferation, suppressing apoptosis and inducing epithelial-mesenchymal transition.
    Gao Y; Ma H; Gao C; Lv Y; Chen X; Xu R; Sun M; Liu X; Lu X; Pei X; Li P
    J Transl Med; 2018 Feb; 16(1):38. PubMed ID: 29471858
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Role of Nuclear Receptors in Controlling Erythropoiesis.
    Pastori V; Pozzi S; Labedz A; Ahmed S; Ronchi AE
    Int J Mol Sci; 2022 Mar; 23(5):. PubMed ID: 35269942
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Discovery of Transcriptional Targets Regulated by Nuclear Receptors Using a Probabilistic Graphical Model.
    Lee M; Huang R; Tong W
    Toxicol Sci; 2016 Mar; 150(1):64-73. PubMed ID: 26643261
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Nuclear receptors and differentiation of oligodendrocyte precursor cells.
    Baldassarro VA; Flagelli A; Sannia M; Calzà L
    Vitam Horm; 2021; 116():389-407. PubMed ID: 33752826
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nuclear Receptors as Potential Therapeutic Targets for Myeloid Leukemia.
    Pan P; Chen X
    Cells; 2020 Aug; 9(9):. PubMed ID: 32824945
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nuclear receptors and chromatin: an inducible couple.
    Gadaleta RM; Magnani L
    J Mol Endocrinol; 2014 Apr; 52(2):R137-49. PubMed ID: 24363438
    [TBL] [Abstract][Full Text] [Related]  

  • 70. NR4A1, 2, 3--an orphan nuclear hormone receptor family involved in cell apoptosis and carcinogenesis.
    Li QX; Ke N; Sundaram R; Wong-Staal F
    Histol Histopathol; 2006 May; 21(5):533-40. PubMed ID: 16493583
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The role of Cripto-1 in the tumorigenesis and progression of oral squamous cell carcinoma.
    Yoon HJ; Hong JS; Shin WJ; Lee YJ; Hong KO; Lee JI; Hong SP; Hong SD
    Oral Oncol; 2011 Nov; 47(11):1023-31. PubMed ID: 21824804
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An indirubin derivative, indirubin-3'-monoxime suppresses oral cancer tumorigenesis through the downregulation of survivin.
    Lo WY; Chang NW
    PLoS One; 2013; 8(8):e70198. PubMed ID: 23967071
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Primers on molecular pathways: nuclear receptors in pancreatic cancer. The ligand-independent way.
    Nacusi LP; Debes JD
    Pancreatology; 2008; 8(4-5):422-4. PubMed ID: 18714175
    [TBL] [Abstract][Full Text] [Related]  

  • 74. MicroRNA-143 suppresses oral squamous cell carcinoma cell growth, invasion and glucose metabolism through targeting hexokinase 2.
    Sun X; Zhang L
    Biosci Rep; 2017 Jun; 37(3):. PubMed ID: 28174335
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Expression profiling of nuclear receptors in human and mouse embryonic stem cells.
    Xie CQ; Jeong Y; Fu M; Bookout AL; Garcia-Barrio MT; Sun T; Kim BH; Xie Y; Root S; Zhang J; Xu RH; Chen YE; Mangelsdorf DJ
    Mol Endocrinol; 2009 May; 23(5):724-33. PubMed ID: 19196830
    [TBL] [Abstract][Full Text] [Related]  

  • 76. KLF6 inhibited oral cancer migration and invasion via downregulation of mesenchymal markers and inhibition of MMP-9 activities.
    Hsu LS; Huang RH; Lai HW; Hsu HT; Sung WW; Hsieh MJ; Wu CY; Lin YM; Chen MK; Lo YS; Chen CJ
    Int J Med Sci; 2017; 14(6):530-535. PubMed ID: 28638268
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Pan-cancer analyses of human nuclear receptors reveal transcriptome diversity and prognostic value across cancer types.
    Parris TZ
    Sci Rep; 2020 Feb; 10(1):1873. PubMed ID: 32024906
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Regulation of nuclear receptor and cofactor expression in breast cancer cell lines.
    Vienonen A; Miettinen S; Manninen T; Altucci L; Wilhelm E; Ylikomi T
    Eur J Endocrinol; 2003 Apr; 148(4):469-79. PubMed ID: 12656669
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular pathways: the complexity of the epigenome in cancer and recent clinical advances.
    Conte M; Altucci L
    Clin Cancer Res; 2012 Oct; 18(20):5526-34. PubMed ID: 22904103
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genetics/epigenetics of oral premalignancy: current status and future research.
    Lingen MW; Pinto A; Mendes RA; Franchini R; Czerninski R; Tilakaratne WM; Partridge M; Peterson DE; Woo SB
    Oral Dis; 2011 Apr; 17 Suppl 1():7-22. PubMed ID: 21382136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.