These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 35364269)
1. Methods for predicting single-cell miRNA in breast cancer. Zhao C; Cheng Q; Xie W; Xu J; Xu S; Wang Y; Feng W Genomics; 2022 May; 114(3):110353. PubMed ID: 35364269 [TBL] [Abstract][Full Text] [Related]
2. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Chang YY; Kuo WH; Hung JH; Lee CY; Lee YH; Chang YC; Lin WC; Shen CY; Huang CS; Hsieh FJ; Lai LC; Tsai MH; Chang KJ; Chuang EY Mol Cancer; 2015 Feb; 14():36. PubMed ID: 25888956 [TBL] [Abstract][Full Text] [Related]
3. Comprehensive Analysis of Differentially Expressed Profiles of lncRNAs/mRNAs and miRNAs with Associated ceRNA Networks in Triple-Negative Breast Cancer. Yang R; Xing L; Wang M; Chi H; Zhang L; Chen J Cell Physiol Biochem; 2018; 50(2):473-488. PubMed ID: 30308479 [TBL] [Abstract][Full Text] [Related]
4. Dissecting the biological relationship between TCGA miRNA and mRNA sequencing data using MMiRNA-Viewer. Bai Y; Ding L; Baker S; Bai JM; Rath E; Jiang F; Wu J; Jiang H; Stuart G BMC Bioinformatics; 2016 Oct; 17(Suppl 13):336. PubMed ID: 27766936 [TBL] [Abstract][Full Text] [Related]
5. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Terkelsen T; Russo F; Gromov P; Haakensen VD; Brunak S; Gromova I; Krogh A; Papaleo E Breast Cancer Res; 2020 Jun; 22(1):73. PubMed ID: 32605588 [TBL] [Abstract][Full Text] [Related]
6. DeepMirTar: a deep-learning approach for predicting human miRNA targets. Wen M; Cong P; Zhang Z; Lu H; Li T Bioinformatics; 2018 Nov; 34(22):3781-3787. PubMed ID: 29868708 [TBL] [Abstract][Full Text] [Related]
7. Coordinated regulation of WNT/β-catenin, c-Met, and integrin signalling pathways by miR-193b controls triple negative breast cancer metastatic traits. Giacomelli C; Jung J; Wachter A; Ibing S; Will R; Uhlmann S; Mannsperger H; Sahin Ö; Yarden Y; Beißbarth T; Korf U; Körner C; Wiemann S BMC Cancer; 2021 Dec; 21(1):1296. PubMed ID: 34863149 [TBL] [Abstract][Full Text] [Related]
8. Machine Learning Using Gene-Sets to Infer miRNA Function. Dhawan A; Buffa FM Adv Exp Med Biol; 2022; 1385():229-240. PubMed ID: 36352216 [TBL] [Abstract][Full Text] [Related]
9. Identifying miRNA-mRNA regulatory relationships in breast cancer with invariant causal prediction. Pham VV; Zhang J; Liu L; Truong B; Xu T; Nguyen TT; Li J; Le TD BMC Bioinformatics; 2019 Mar; 20(1):143. PubMed ID: 30876399 [TBL] [Abstract][Full Text] [Related]
10. Integrated MicroRNA-mRNA Profiling Identifies Oncostatin M as a Marker of Mesenchymal-Like ER-Negative/HER2-Negative Breast Cancer. Bottai G; Diao L; Baggerly KA; Paladini L; Győrffy B; Raschioni C; Pusztai L; Calin GA; Santarpia L Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106823 [TBL] [Abstract][Full Text] [Related]
11. Serum-based six-miRNA signature as a potential marker for EC diagnosis: Comparison with TCGA miRNAseq dataset and identification of miRNA-mRNA target pairs by integrated analysis of TCGA miRNAseq and RNAseq datasets. Sharma P; Saraya A; Sharma R Asia Pac J Clin Oncol; 2018 Oct; 14(5):e289-e301. PubMed ID: 29380534 [TBL] [Abstract][Full Text] [Related]
12. LncmiRSRN: identification and analysis of long non-coding RNA related miRNA sponge regulatory network in human cancer. Zhang J; Liu L; Li J; Le TD Bioinformatics; 2018 Dec; 34(24):4232-4240. PubMed ID: 29955818 [TBL] [Abstract][Full Text] [Related]
13. Identification of mRNA and non-coding RNA hubs using network analysis in organ tropism regulated triple negative breast cancer metastasis. Banerjee S; Kalyani Yabalooru SR; Karunagaran D Comput Biol Med; 2020 Dec; 127():104076. PubMed ID: 33126129 [TBL] [Abstract][Full Text] [Related]
14. Gene and lncRNA co-expression network analysis reveals novel ceRNA network for triple-negative breast cancer. Le K; Guo H; Zhang Q; Huang X; Xu M; Huang Z; Yi P Sci Rep; 2019 Oct; 9(1):15122. PubMed ID: 31641220 [TBL] [Abstract][Full Text] [Related]
15. Identification of dysregulated miRNAs in triple negative breast cancer: A meta-analysis approach. Naorem LD; Muthaiyan M; Venkatesan A J Cell Physiol; 2019 Jul; 234(7):11768-11779. PubMed ID: 30488443 [TBL] [Abstract][Full Text] [Related]
16. Regulation of miRNA-29c and its downstream pathways in preneoplastic progression of triple-negative breast cancer. Bhardwaj A; Singh H; Rajapakshe K; Tachibana K; Ganesan N; Pan Y; Gunaratne PH; Coarfa C; Bedrosian I Oncotarget; 2017 Mar; 8(12):19645-19660. PubMed ID: 28160548 [TBL] [Abstract][Full Text] [Related]
17. Epigenetic regulation of triple negative breast cancer (TNBC) by TGF-β signaling. Vishnubalaji R; Alajez NM Sci Rep; 2021 Jul; 11(1):15410. PubMed ID: 34326372 [TBL] [Abstract][Full Text] [Related]
19. A pseudotemporal causality approach to identifying miRNA-mRNA interactions during biological processes. Cifuentes-Bernal AM; Pham VV; Li X; Liu L; Li J; Le TD Bioinformatics; 2021 May; 37(6):807-814. PubMed ID: 33070184 [TBL] [Abstract][Full Text] [Related]
20. Epithelial to mesenchymal transition and microRNA expression are associated with spindle and apocrine cell morphology in triple-negative breast cancer. Koleckova M; Ehrmann J; Bouchal J; Janikova M; Brisudova A; Srovnal J; Staffova K; Svoboda M; Slaby O; Radova L; Vomackova K; Melichar B; Veverkova L; Kolar Z Sci Rep; 2021 Mar; 11(1):5145. PubMed ID: 33664322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]