These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35364484)

  • 21. Creating Order from Chaos: Epigenome Dynamics in Plants with Complex Genomes.
    Springer NM; Lisch D; Li Q
    Plant Cell; 2016 Feb; 28(2):314-25. PubMed ID: 26869701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quality control and evaluation of plant epigenomics data.
    Schmitz RJ; Marand AP; Zhang X; Mosher RA; Turck F; Chen X; Axtell MJ; Zhong X; Brady SM; Megraw M; Meyers BC
    Plant Cell; 2022 Jan; 34(1):503-513. PubMed ID: 34648025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNA-polymerase specificity of transcription of Arabidopsis U snRNA genes determined by promoter element spacing.
    Waibel F; Filipowicz W
    Nature; 1990 Jul; 346(6280):199-202. PubMed ID: 2366873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 4D epigenomics: deciphering the coupling between genome folding and epigenomic regulation with biophysical modeling.
    Abdulla AZ; Salari H; Tortora MMC; Vaillant C; Jost D
    Curr Opin Genet Dev; 2023 Apr; 79():102033. PubMed ID: 36893485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long non-coding RNAs and chromatin regulation.
    De Lucia F; Dean C
    Curr Opin Plant Biol; 2011 Apr; 14(2):168-73. PubMed ID: 21168359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA processing factors Swd2.2 and Sen1 antagonize RNA Pol III-dependent transcription and the localization of condensin at Pol III genes.
    Legros P; Malapert A; Niinuma S; Bernard P; Vanoosthuyse V
    PLoS Genet; 2014 Nov; 10(11):e1004794. PubMed ID: 25392932
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZSCAN5B and primate-specific paralogs bind RNA polymerase III genes and extra-TFIIIC (ETC) sites to modulate mitotic progression.
    Sun Y; Zhang H; Kazemian M; Troy JM; Seward C; Lu X; Stubbs L
    Oncotarget; 2016 Nov; 7(45):72571-72592. PubMed ID: 27732952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants.
    Wang MB; Helliwell CA; Wu LM; Waterhouse PM; Peacock WJ; Dennis ES
    RNA; 2008 May; 14(5):903-13. PubMed ID: 18367720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae.
    Wang Q; Nowak CM; Korde A; Oh DH; Dassanayake M; Donze D
    BMC Biol; 2014 Oct; 12():89. PubMed ID: 25348158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of RNA polymerase III-transcribed genes in eukaryotic genomes.
    Dieci G; Conti A; Pagano A; Carnevali D
    Biochim Biophys Acta; 2013; 1829(3-4):296-305. PubMed ID: 23041497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated model for termination of RNA polymerase III transcription.
    Xie J; Aiello U; Clement Y; Haidara N; Girbig M; Schmitzova J; Pena V; Müller CW; Libri D; Porrua O
    Sci Adv; 2022 Jul; 8(28):eabm9875. PubMed ID: 35857496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response.
    Kim JH
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670556
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark.
    Donze D
    Gene; 2012 Feb; 493(2):169-75. PubMed ID: 21986035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Retrospective and perspective of plant epigenetics in China.
    Duan CG; Zhu JK; Cao X
    J Genet Genomics; 2018 Nov; 45(11):621-638. PubMed ID: 30455036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial organization of transcription by RNA polymerase III.
    Haeusler RA; Engelke DR
    Nucleic Acids Res; 2006; 34(17):4826-36. PubMed ID: 16971453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small nuclear RNA genes transcribed by either RNA polymerase II or RNA polymerase III in monocot plants share three promoter elements and use a strategy to regulate gene expression different from that used by their dicot plant counterparts.
    Connelly S; Marshallsay C; Leader D; Brown JW; Filipowicz W
    Mol Cell Biol; 1994 Sep; 14(9):5910-9. PubMed ID: 8065324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-resolution RNA allelotyping along the inactive X chromosome: evidence of RNA polymerase III in regulating chromatin configuration.
    Hong R; Lin B; Lu X; Lai LT; Chen X; Sanyal A; Ng HH; Zhang K; Zhang LF
    Sci Rep; 2017 Apr; 7():45460. PubMed ID: 28368037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. U6 snRNA genes of Arabidopsis are transcribed by RNA polymerase III but contain the same two upstream promoter elements as RNA polymerase II-transcribed U-snRNA genes.
    Waibel F; Filipowicz W
    Nucleic Acids Res; 1990 Jun; 18(12):3451-8. PubMed ID: 2362802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decoding the principles underlying the frequency of association with nucleoli for RNA polymerase III-transcribed genes in budding yeast.
    Belagal P; Normand C; Shukla A; Wang R; Léger-Silvestre I; Dez C; Bhargava P; Gadal O
    Mol Biol Cell; 2016 Oct; 27(20):3164-3177. PubMed ID: 27559135
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nucleosome depletion activates poised RNA polymerase III at unconventional transcription sites in Saccharomyces cerevisiae.
    Guffanti E; Percudani R; Harismendy O; Soutourina J; Werner M; Iacovella MG; Negri R; Dieci G
    J Biol Chem; 2006 Sep; 281(39):29155-64. PubMed ID: 16816405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.