BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 35364545)

  • 1. Clusters in colloidal dispersions with a short-range depletion attraction: Thermodynamic identification and morphology.
    Soto-Bustamante F; Valadez-Pérez NE; Liu Y; Castañeda-Priego R; Laurati M
    J Colloid Interface Sci; 2022 Jul; 618():442-450. PubMed ID: 35364545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible Aggregation and Colloidal Cluster Morphology: The Importance of the Extended Law of Corresponding States.
    Valadez-Pérez NE; Liu Y; Castañeda-Priego R
    Phys Rev Lett; 2018 Jun; 120(24):248004. PubMed ID: 29956967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and rheology of colloidal particle gels: insight from computer simulation.
    Dickinson E
    Adv Colloid Interface Sci; 2013 Nov; 199-200():114-27. PubMed ID: 23916723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Location of the gel-like boundary in patchy colloidal dispersions: Rigidity percolation, structure, and particle dynamics.
    Gallegos JAS; Perdomo-Pérez R; Valadez-Pérez NE; Castañeda-Priego R
    Phys Rev E; 2021 Dec; 104(6-1):064606. PubMed ID: 35030878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-equilibrium behavior of sticky colloidal particles: beads, clusters and gels.
    Sedgwick H; Kroy K; Salonen A; Robertson MB; Egelhaaf SU; Poon WC
    Eur Phys J E Soft Matter; 2005 Jan; 16(1):77-80. PubMed ID: 15688143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling colloidal interactions that predict equilibrium and non-equilibrium states.
    Ryu BK; Fenton SM; Nguyen TTD; Helgeson ME; Zia RN
    J Chem Phys; 2022 Jun; 156(22):224101. PubMed ID: 35705397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized phase behavior of cluster formation in colloidal dispersions with competing interactions.
    Godfrin PD; Valadez-Pérez NE; Castañeda-Priego R; Wagner NJ; Liu Y
    Soft Matter; 2014 Jul; 10(28):5061-71. PubMed ID: 24899107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal aggregation with mobile impurities.
    AlSunaidi A; Lach-Hab M; Blaisten-Barojas E; González AE
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt B):6781-8. PubMed ID: 11088373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium gels of low-valence DNA nanostars: a colloidal model for strong glass formers.
    Biffi S; Cerbino R; Nava G; Bomboi F; Sciortino F; Bellini T
    Soft Matter; 2015 Apr; 11(16):3132-8. PubMed ID: 25747102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and thermodynamics of colloidal protein cluster formation: comparison of square-well and simple dipolar models.
    Young TM; Roberts CJ
    J Chem Phys; 2009 Sep; 131(12):125104. PubMed ID: 19791922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium cluster formation in concentrated protein solutions and colloids.
    Stradner A; Sedgwick H; Cardinaux F; Poon WC; Egelhaaf SU; Schurtenberger P
    Nature; 2004 Nov; 432(7016):492-5. PubMed ID: 15565151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics, static properties and transport behaviour of fluids with competing interactions.
    Perdomo-Pérez R; Martínez-Rivera J; Palmero-Cruz NC; Sandoval-Puentes MA; Gallegos JAS; Lázaro-Lázaro E; Valadez-Pérez NE; Torres-Carbajal A; Castañeda-Priego R
    J Phys Condens Matter; 2022 Feb; 34(14):. PubMed ID: 35026739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloidal glasses and gels: The interplay of bonding and caging.
    Zaccarelli E; Poon WC
    Proc Natl Acad Sci U S A; 2009 Sep; 106(36):15203-8. PubMed ID: 19706405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model.
    Dzwinel W; Yuen DA; Boryczko K
    J Mol Model; 2002 Jan; 8(1):33-43. PubMed ID: 12111400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sedimentation of aggregating colloids.
    Whitmer JK; Luijten E
    J Chem Phys; 2011 Jan; 134(3):034510. PubMed ID: 21261371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-Consistent Ornstein-Zernike Approximation (SCOZA) and exact second virial coefficients and their relationship with critical temperature for colloidal or protein suspensions with short-ranged attractive interactions.
    Gazzillo D; Pini D
    J Chem Phys; 2013 Oct; 139(16):164501. PubMed ID: 24182043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, stability, and formation pathways of colloidal gels in systems with short-range attraction and long-range repulsion.
    van Schooneveld MM; de Villeneuve VW; Dullens RP; Aarts DG; Leunissen ME; Kegel WK
    J Phys Chem B; 2009 Apr; 113(14):4560-4. PubMed ID: 19267487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Sticky" hard spheres: equation of state, phase diagram, and metastable gels.
    Buzzaccaro S; Rusconi R; Piazza R
    Phys Rev Lett; 2007 Aug; 99(9):098301. PubMed ID: 17931041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyion-induced aggregation of oppositely charged liposomes and charged colloidal particles: the many facets of complex formation in low-density colloidal systems.
    Cametti C
    Chem Phys Lipids; 2008 Oct; 155(2):63-73. PubMed ID: 18718458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and minimum size of colloidal clusters on a liquid-air interface.
    Pergamenshchik VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021403. PubMed ID: 22463208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.