BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 3536457)

  • 1. Regulation of androgen metabolism and luteinizing hormone-releasing hormone content in discrete hypothalamic and limbic areas of male rhesus macaques.
    Roselli CE; Stadelman H; Horton LE; Resko JA
    Endocrinology; 1987 Jan; 120(1):97-106. PubMed ID: 3536457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distribution and regulation of aromatase activity in the rat hypothalamus and limbic system.
    Roselli CE; Horton LE; Resko JA
    Endocrinology; 1985 Dec; 117(6):2471-7. PubMed ID: 4065042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testosterone regulates aromatase activity in discrete brain areas of male rhesus macaques.
    Roselli CE; Resko JA
    Biol Reprod; 1989 May; 40(5):929-34. PubMed ID: 2765616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aromatization and 5alpha-reduction of androgens in discrete hypothalamic and limbic regions of the male and female rat.
    Selmanoff MK; Brodkin LD; Weiner RI; Siiteri PK
    Endocrinology; 1977 Sep; 101(3):841-8. PubMed ID: 891467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain aromatization of testosterone in the male Syrian hamster: effects of androgen and photoperiod.
    Hutchison RE; Hutchison JB; Steimer T; Steel E; Powers JB; Walker AP; Herbert J; Hastings MH
    Neuroendocrinology; 1991 Feb; 53(2):194-203. PubMed ID: 1901634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective activation of androgen receptors in the subcortical brain of male cynomolgus macaques by physiological hormone levels and its relationship to androgen-dependent aromatase activity.
    Resko JA; Connolly PB; Roselli CE; Abdelgadir SE; Choate JV
    J Clin Endocrinol Metab; 1993 Jun; 76(6):1588-93. PubMed ID: 8501167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aromatase activity in quail brain: correlation with aggressiveness.
    Schlinger BA; Callard GV
    Endocrinology; 1989 Jan; 124(1):437-43. PubMed ID: 2909376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and regulation of aromatase activity in the ram hypothalamus and amygdala.
    Roselli CE; Stormshak F; Resko JA
    Brain Res; 1998 Nov; 811(1-2):105-10. PubMed ID: 9804911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that catecholaminergic and peptidergic (luteinizing hormone-releasing hormone) neurons in suprachiasmatic-medial preoptic, medial basal hypothalamus and median eminence are involved in estrogen-negative feedback.
    Advis JP; McCann SM; Negro-Vilar A
    Endocrinology; 1980 Oct; 107(4):892-901. PubMed ID: 6997020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular observations and hormonal correlates of feedback control of luteinizing hormone secretion by testosterone in long-term castrated male rhesus monkeys.
    Resko JA; Pereyra-Martinez AC; Stadelman HL; Roselli CE
    Biol Reprod; 2000 Sep; 63(3):872-8. PubMed ID: 10952934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The quantitative distribution of cytosolic androgen receptors in microdissected areas of the male rat brain: effects of estrogen treatment.
    Handa RJ; Roselli CE; Horton L; Resko JA
    Endocrinology; 1987 Jul; 121(1):233-40. PubMed ID: 3496208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute selective withdrawal of testosterone negative feedback increases luteinizing hormone secretion without altering hypothalamic catecholaminergic neuronal activity.
    Liebmann JE; Matsumoto AM
    Endocrinology; 1990 Jan; 126(1):555-64. PubMed ID: 2403522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in brain aromatase and 5 alpha-reductase activities correlate significantly with seasonal reproductive cycles in goldfish (Carassius auratus).
    Pasmanik M; Callard GV
    Endocrinology; 1988 Apr; 122(4):1349-56. PubMed ID: 3345716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LHRH immunopositive cells and their projections to the median eminence and organum vasculosum of the lamina terminalis.
    King JC; Tobet SA; Snavely FL; Arimura AA
    J Comp Neurol; 1982 Aug; 209(3):287-300. PubMed ID: 6752217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5 alpha-reductase, aromatase, and androgen receptor levels in the monkey brain during fetal development.
    Sholl SA; Goy RW; Kim KL
    Endocrinology; 1989 Feb; 124(2):627-34. PubMed ID: 2912690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Androgens regulate aromatase cytochrome P450 messenger ribonucleic acid in rat brain.
    Abdelgadir SE; Resko JA; Ojeda SR; Lephart ED; McPhaul MJ; Roselli CE
    Endocrinology; 1994 Jul; 135(1):395-401. PubMed ID: 8013375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of luteinizing hormone releasing hormone in the canine hypothalamus: effect of castration and exogenous gonadal steroids.
    Kumar MS; Chen CL; Kalra SP
    Am J Vet Res; 1980 Aug; 41(8):1304-9. PubMed ID: 7004277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgen aromatization and 5 alpha-reduction in ferret brain during perinatal development: effects of sex and testosterone manipulation.
    Tobet SA; Shim JH; Osiecki ST; Baum MJ; Canick JA
    Endocrinology; 1985 May; 116(5):1869-77. PubMed ID: 3987621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic evidence for androgen-dependent and independent control of aromatase activity in the rat brain.
    Roselli CE; Salisbury RL; Resko JA
    Endocrinology; 1987 Dec; 121(6):2205-10. PubMed ID: 3678147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The luteinizing hormone-releasing hormone pathways in rhesus (Macaca mulatta) and pigtailed (Macaca nemestrina) monkeys: new observations on thick, unembedded sections.
    Silverman AJ; Antunes JL; Abrams GM; Nilaver G; Thau R; Robinson JA; Ferin M; Krey LC
    J Comp Neurol; 1982 Nov; 211(3):309-17. PubMed ID: 6757282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.