BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 35364584)

  • 1. Differentiation of lumbar disc herniation and lumbar spinal stenosis using natural language processing-based machine learning based on positive symptoms.
    Ren G; Yu K; Xie Z; Liu L; Wang P; Zhang W; Wang Y; Wu X
    Neurosurg Focus; 2022 Apr; 52(4):E7. PubMed ID: 35364584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural language processing-driven artificial intelligence models for the diagnosis of lumbar disc herniation with L5 and S1 radiculopathy: a preliminary evaluation.
    Wang P; Zhang Z; Xie Z; Liu L; Ren G; Guo Z; Xu L; Yin X; Hu Y; Wang Y; Wu X
    World Neurosurg; 2024 Jun; ():. PubMed ID: 38878892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can We Geographically Validate a Natural Language Processing Algorithm for Automated Detection of Incidental Durotomy Across Three Independent Cohorts From Two Continents?
    Karhade AV; Oosterhoff JHF; Groot OQ; Agaronnik N; Ehresman J; Bongers MER; Jaarsma RL; Poonnoose SI; Sciubba DM; Tobert DG; Doornberg JN; Schwab JH
    Clin Orthop Relat Res; 2022 Sep; 480(9):1766-1775. PubMed ID: 35412473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural language processing for automated detection of incidental durotomy.
    Karhade AV; Bongers MER; Groot OQ; Kazarian ER; Cha TD; Fogel HA; Hershman SH; Tobert DG; Schoenfeld AJ; Bono CM; Kang JD; Harris MB; Schwab JH
    Spine J; 2020 May; 20(5):695-700. PubMed ID: 31877390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of machine learning and natural language processing algorithms for preoperative prediction and automated identification of intraoperative vascular injury in anterior lumbar spine surgery.
    Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Srivastava SD; Bono CM; Kang JD; Harris MB; Schwab JH
    Spine J; 2021 Oct; 21(10):1635-1642. PubMed ID: 32294557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning-based preoperative predictive analytics for lumbar spinal stenosis.
    Siccoli A; de Wispelaere MP; Schröder ML; Staartjes VE
    Neurosurg Focus; 2019 May; 46(5):E5. PubMed ID: 31042660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can natural language processing provide accurate, automated reporting of wound infection requiring reoperation after lumbar discectomy?
    Karhade AV; Bongers MER; Groot OQ; Cha TD; Doorly TP; Fogel HA; Hershman SH; Tobert DG; Schoenfeld AJ; Kang JD; Harris MB; Bono CM; Schwab JH
    Spine J; 2020 Oct; 20(10):1602-1609. PubMed ID: 32145358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A machine learning algorithm for predicting prolonged postoperative opioid prescription after lumbar disc herniation surgery. An external validation study using 1,316 patients from a Taiwanese cohort.
    Yen HK; Ogink PT; Huang CC; Groot OQ; Su CC; Chen SF; Chen CW; Karhade AV; Peng KP; Lin WH; Chiang H; Yang JJ; Dai SH; Yen MH; Verlaan JJ; Schwab JH; Wong TH; Yang SH; Hu MH
    Spine J; 2022 Jul; 22(7):1119-1130. PubMed ID: 35202784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mining Clinical Notes for Physical Rehabilitation Exercise Information: Natural Language Processing Algorithm Development and Validation Study.
    Sivarajkumar S; Gao F; Denny P; Aldhahwani B; Visweswaran S; Bove A; Wang Y
    JMIR Med Inform; 2024 Apr; 12():e52289. PubMed ID: 38568736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Grading of Disc Herniation, Central Canal Stenosis and Nerve Roots Compression in Lumbar Magnetic Resonance Image Diagnosis.
    Su ZH; Liu J; Yang MS; Chen ZY; You K; Shen J; Huang CJ; Zhao QH; Liu EQ; Zhao L; Feng QJ; Pang SM; Li SL; Lu H
    Front Endocrinol (Lausanne); 2022; 13():890371. PubMed ID: 35733770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New diagnostic support tool for patients with leg symptoms caused by lumbar spinal stenosis and lumbar intervertebral disc herniation: A self-administered, self-reported history questionnaire.
    Aizawa T; Tanaka Y; Yokoyama T; Shimada Y; Yamazaki K; Takei H; Konno S; Kawahara C; Itoi E; Kokubun S
    J Orthop Sci; 2016 Sep; 21(5):579-85. PubMed ID: 27527658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Preoperative and Intraoperative Factors to Predict the Risk of Surgical Site Infections After Lumbar Spinal Surgery: A Machine Learning-Based Study.
    Liu WC; Ying H; Liao WJ; Li MP; Zhang Y; Luo K; Sun BL; Liu ZL; Liu JM
    World Neurosurg; 2022 Jun; 162():e553-e560. PubMed ID: 35318153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural language processing for prediction of readmission in posterior lumbar fusion patients: which free-text notes have the most utility?
    Karhade AV; Lavoie-Gagne O; Agaronnik N; Ghaednia H; Collins AK; Shin D; Schwab JH
    Spine J; 2022 Feb; 22(2):272-277. PubMed ID: 34407468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach.
    Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC
    BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting decompression surgery by applying multimodal deep learning to patients' structured and unstructured health data.
    Jujjavarapu C; Suri P; Pejaver V; Friedly J; Gold LS; Meier E; Cohen T; Mooney SD; Heagerty PJ; Jarvik JG
    BMC Med Inform Decis Mak; 2023 Jan; 23(1):2. PubMed ID: 36609379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Scalable Radiomics- and Natural Language Processing-Based Machine Learning Pipeline to Distinguish Between Painful and Painless Thoracic Spinal Bone Metastases: Retrospective Algorithm Development and Validation Study.
    Naseri H; Skamene S; Tolba M; Faye MD; Ramia P; Khriguian J; David M; Kildea J
    JMIR AI; 2023 May; 2():e44779. PubMed ID: 38875572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated selection of mid-height intervertebral disc slice in traverse lumbar spine MRI using a combination of deep learning feature and machine learning classifier.
    Natalia F; Young JC; Afriliana N; Meidia H; Yunus RE; Sudirman S
    PLoS One; 2022; 17(1):e0261659. PubMed ID: 35025904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Natural Language Processing Rules-based and Machine-learning Systems to Identify Lumbar Spine Imaging Findings Related to Low Back Pain.
    Tan WK; Hassanpour S; Heagerty PJ; Rundell SD; Suri P; Huhdanpaa HT; James K; Carrell DS; Langlotz CP; Organ NL; Meier EN; Sherman KJ; Kallmes DF; Luetmer PH; Griffith B; Nerenz DR; Jarvik JG
    Acad Radiol; 2018 Nov; 25(11):1422-1432. PubMed ID: 29605561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.