BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 35364693)

  • 1. Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation.
    Claassens NJ; Satanowski A; Bysani VR; Dronsella B; Orsi E; Rainaldi V; Yilmaz S; Wenk S; Lindner SN
    Adv Biochem Eng Biotechnol; 2022; 180():299-350. PubMed ID: 35364693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic Methanol and Formate Assimilation Via Modular Engineering and Selection Strategies.
    Claassens NJ; He H; Bar-Even A
    Curr Issues Mol Biol; 2019; 33():237-248. PubMed ID: 31166196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway.
    Bruinsma L; Wenk S; Claassens NJ; Martins Dos Santos VAP
    Metab Eng; 2023 Mar; 76():215-224. PubMed ID: 36804222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation.
    Turlin J; Dronsella B; De Maria A; Lindner SN; Nikel PI
    Metab Eng; 2022 Nov; 74():191-205. PubMed ID: 36328297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vivo Assimilation of One-Carbon via a Synthetic Reductive Glycine Pathway in Escherichia coli.
    Yishai O; Bouzon M; Döring V; Bar-Even A
    ACS Synth Biol; 2018 Sep; 7(9):2023-2028. PubMed ID: 29763299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core Catalysis of the Reductive Glycine Pathway Demonstrated in Yeast.
    Gonzalez de la Cruz J; Machens F; Messerschmidt K; Bar-Even A
    ACS Synth Biol; 2019 May; 8(5):911-917. PubMed ID: 31002757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel outlook in engineering synthetic methylotrophs and formatotrophs: a course for advancing C1-based chemicals production.
    Tuyishime P; Sinumvayo JP
    World J Microbiol Biotechnol; 2020 Jul; 36(8):118. PubMed ID: 32681457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of E. coli on formate and methanol via the reductive glycine pathway.
    Kim S; Lindner SN; Aslan S; Yishai O; Wenk S; Schann K; Bar-Even A
    Nat Chem Biol; 2020 May; 16(5):538-545. PubMed ID: 32042198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Assimilation of Exogenous and Endogenous Formate in Escherichia coli.
    Yishai O; Goldbach L; Tenenboim H; Lindner SN; Bar-Even A
    ACS Synth Biol; 2017 Sep; 6(9):1722-1731. PubMed ID: 28558223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive Glycine Pathway: A Versatile Route for One-Carbon Biotech.
    Claassens NJ
    Trends Biotechnol; 2021 Apr; 39(4):327-329. PubMed ID: 33632541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding and Engineering Glycine Cleavage System and Related Metabolic Pathways for C1-Based Biosynthesis.
    Ren J; Wang W; Nie J; Yuan W; Zeng AP
    Adv Biochem Eng Biotechnol; 2022; 180():273-298. PubMed ID: 35294558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replacing the Calvin cycle with the reductive glycine pathway in Cupriavidus necator.
    Claassens NJ; Bordanaba-Florit G; Cotton CAR; De Maria A; Finger-Bou M; Friedeheim L; Giner-Laguarda N; Munar-Palmer M; Newell W; Scarinci G; Verbunt J; de Vries ST; Yilmaz S; Bar-Even A
    Metab Eng; 2020 Nov; 62():30-41. PubMed ID: 32805426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and evolution of the complete Reductive Glycine Pathway in Saccharomyces cerevisiae for formate and CO
    Bysani VR; Alam AS; Bar-Even A; Machens F
    Metab Eng; 2024 Jan; 81():167-181. PubMed ID: 38040111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing
    Kim S; Giraldo N; Rainaldi V; Machens F; Collas F; Kubis A; Kensy F; Bar-Even A; Lindner SN
    Front Bioeng Biotechnol; 2023; 11():1091899. PubMed ID: 36726742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent progress in metabolic engineering of microbial formate assimilation.
    Mao W; Yuan Q; Qi H; Wang Z; Ma H; Chen T
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):6905-6917. PubMed ID: 32566995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks.
    Jiang W; Hernández Villamor D; Peng H; Chen J; Liu L; Haritos V; Ledesma-Amaro R
    Nat Chem Biol; 2021 Aug; 17(8):845-855. PubMed ID: 34312558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introduction of glycine synthase enables uptake of exogenous formate and strongly impacts the metabolism in Clostridium pasteurianum.
    Hong Y; Arbter P; Wang W; Rojas LN; Zeng AP
    Biotechnol Bioeng; 2021 Mar; 118(3):1366-1380. PubMed ID: 33331660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO
    Mitic BM; Troyer C; Lutz L; Baumschabl M; Hann S; Mattanovich D
    Nat Commun; 2023 Nov; 14(1):7754. PubMed ID: 38012236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of glycine biosynthesis from one-carbon compounds and ammonia catalyzed by the glycine cleavage system in vitro.
    Xu Y; Ren J; Wang W; Zeng AP
    Eng Life Sci; 2022 Jan; 22(1):40-53. PubMed ID: 35024026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renewable methanol and formate as microbial feedstocks.
    Cotton CA; Claassens NJ; Benito-Vaquerizo S; Bar-Even A
    Curr Opin Biotechnol; 2020 Apr; 62():168-180. PubMed ID: 31733545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.