BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 35364813)

  • 1. Atmospheric Water Harvesting by Large-Scale Radiative Cooling Cellulose-Based Fabric.
    Zhang Y; Zhu W; Zhang C; Peoples J; Li X; Felicelli AL; Shan X; Warsinger DM; Borca-Tasciuc T; Ruan X; Li T
    Nano Lett; 2022 Apr; 22(7):2618-2626. PubMed ID: 35364813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorbent-coupled radiative cooling and solar heating to improve atmospheric water harvesting.
    Huang Y; Li Q; Chen Z; Chen M
    J Colloid Interface Sci; 2024 Feb; 655():527-534. PubMed ID: 37952456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Radiative Cooling Textiles Based on Composite Nanoporous Fibers for Personal Thermal Management.
    Li M; Yan Z; Fan D
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17848-17857. PubMed ID: 36977290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly-Scattering Cellulose-Based Films for Radiative Cooling.
    Jaramillo-Fernandez J; Yang H; Schertel L; Whitworth GL; Garcia PD; Vignolini S; Sotomayor-Torres CM
    Adv Sci (Weinh); 2022 Mar; 9(8):e2104758. PubMed ID: 35038253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption-Based Atmospheric Water Harvesting: Impact of Material and Component Properties on System-Level Performance.
    LaPotin A; Kim H; Rao SR; Wang EN
    Acc Chem Res; 2019 Jun; 52(6):1588-1597. PubMed ID: 31090396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structurally Colored Radiative Cooling Cellulosic Films.
    Zhu W; Droguet B; Shen Q; Zhang Y; Parton TG; Shan X; Parker RM; De Volder MFL; Deng T; Vignolini S; Li T
    Adv Sci (Weinh); 2022 Sep; 9(26):e2202061. PubMed ID: 35843893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOF-Integrated Hierarchical Composite Fiber for Efficient Daytime Radiative Cooling and Antibacterial Protective Textiles.
    Cai X; Gao L; Wang J; Li D
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8537-8545. PubMed ID: 36726324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable Bacterial Cellulose-Based Radiative Cooling Materials with Switchable Transparency for Thermal Management and Enhanced Solar Energy Harvesting.
    Shi S; Lv P; Valenzuela C; Li B; Liu Y; Wang L; Feng W
    Small; 2023 Sep; 19(39):e2301957. PubMed ID: 37231557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulose-Based Hybrid Structural Material for Radiative Cooling.
    Chen Y; Dang B; Fu J; Wang C; Li C; Sun Q; Li H
    Nano Lett; 2021 Jan; 21(1):397-404. PubMed ID: 33301320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-Conditioned Masks Using Nanofibrous Networks for Daytime Radiative Cooling.
    Liu H; Yu J; Zhang S; Ding B
    Nano Lett; 2022 Dec; 22(23):9485-9492. PubMed ID: 36469697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroporous Hydrogel for High-Performance Atmospheric Water Harvesting.
    Lyu T; Wang Z; Liu R; Chen K; Liu H; Tian Y
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32433-32443. PubMed ID: 35803257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colored Daytime Radiative Cooling Textiles Supported by Semiconductor Quantum Dots.
    Cao J; Xu H; Li X; Gu Y
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19480-19489. PubMed ID: 37023362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellulose-Based Radiative Cooling and Solar Heating Powers Ionic Thermoelectrics.
    Liao M; Banerjee D; Hallberg T; Ã…kerlind C; Alam MM; Zhang Q; Kariis H; Zhao D; Jonsson MP
    Adv Sci (Weinh); 2023 Mar; 10(8):e2206510. PubMed ID: 36646654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling.
    Li D; Liu X; Li W; Lin Z; Zhu B; Li Z; Li J; Li B; Fan S; Xie J; Zhu J
    Nat Nanotechnol; 2021 Feb; 16(2):153-158. PubMed ID: 33199884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid solar-driven atmospheric water-harvesting with MAF-4-derived nitrogen-doped nanoporous carbon.
    Feng JH; Lu F; Chen Z; Jia MM; Chen YL; Lin WH; Wu QY; Li Y; Xue M; Chen XM
    Chem Sci; 2024 Jun; 15(25):9557-9565. PubMed ID: 38939138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Zero-Energy, Zero-Emission Air Conditioning Fabric.
    Zhang K; Lei X; Mo C; Huang J; Wang M; Kang ET; Xu L
    Adv Sci (Weinh); 2023 Apr; 10(11):e2206925. PubMed ID: 36793107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iridescent Daytime Radiative Cooling with No Absorption Peaks in the Visible Range.
    Ding Z; Pattelli L; Xu H; Sun W; Li X; Pan L; Zhao J; Wang C; Zhang X; Song Y; Qiu J; Li Y; Yang R
    Small; 2022 Jun; 18(25):e2202400. PubMed ID: 35587771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathways to Energy-efficient Water Production from the Atmosphere.
    Feng Y; Wang R; Ge T
    Adv Sci (Weinh); 2022 Dec; 9(36):e2204508. PubMed ID: 36285671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling.
    Zeng S; Pian S; Su M; Wang Z; Wu M; Liu X; Chen M; Xiang Y; Wu J; Zhang M; Cen Q; Tang Y; Zhou X; Huang Z; Wang R; Tunuhe A; Sun X; Xia Z; Tian M; Chen M; Ma X; Yang L; Zhou J; Zhou H; Yang Q; Li X; Ma Y; Tao G
    Science; 2021 Aug; 373(6555):692-696. PubMed ID: 34353954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-adaptive integration of photothermal and radiative cooling for continuous energy harvesting from the sun and outer space.
    Ao X; Li B; Zhao B; Hu M; Ren H; Yang H; Liu J; Cao J; Feng J; Yang Y; Qi Z; Li L; Zou C; Pei G
    Proc Natl Acad Sci U S A; 2022 Apr; 119(17):e2120557119. PubMed ID: 35439052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.