These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35364825)
1. Decomposing the dynamics of the Lorenz 1963 model using unstable periodic orbits: Averages, transitions, and quasi-invariant sets. Maiocchi CC; Lucarini V; Gritsun A Chaos; 2022 Mar; 32(3):033129. PubMed ID: 35364825 [TBL] [Abstract][Full Text] [Related]
2. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems. Saiki Y; Yamada M Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096 [TBL] [Abstract][Full Text] [Related]
3. Reliability of unstable periodic orbit based control strategies in biological systems. Mishra N; Hasse M; Biswal B; Singh HP Chaos; 2015 Apr; 25(4):043104. PubMed ID: 25933652 [TBL] [Abstract][Full Text] [Related]
4. Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model. Gritsun A Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120336. PubMed ID: 23588051 [TBL] [Abstract][Full Text] [Related]
5. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation. Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089 [TBL] [Abstract][Full Text] [Related]
6. Statistics of unstable periodic orbits of a chaotic dynamical system with a large number of degrees of freedom. Kawasaki M; Sasa S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037202. PubMed ID: 16241619 [TBL] [Abstract][Full Text] [Related]
7. Detecting and controlling unstable periodic orbits that are not part of a chaotic attractor. Perc M; Marhl M Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016204. PubMed ID: 15324149 [TBL] [Abstract][Full Text] [Related]
8. Globally enumerating unstable periodic orbits for observed data using symbolic dynamics. Buhl M; Kennel MB Chaos; 2007 Sep; 17(3):033102. PubMed ID: 17902984 [TBL] [Abstract][Full Text] [Related]
9. Scattering off two oscillating disks: dilute chaos. Papachristou PK; Diakonos FK; Constantoudis V; Schmelcher P; Benet L Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056215. PubMed ID: 15600736 [TBL] [Abstract][Full Text] [Related]
10. Dynamical-systems analysis and unstable periodic orbits in reacting flows behind symmetric bluff bodies. Hua JC; Gunaratne GH; Kostka S; Jiang N; Kiel BV; Gord JR; Roy S Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033011. PubMed ID: 24125348 [TBL] [Abstract][Full Text] [Related]
11. Different classifications of UPOs in the parametrically different chaotic ISI series of a neural pacemaker. Ren W; Gu H; Jian Z; Lu Q; Yang M Neuroreport; 2001 Jul; 12(10):2121-4. PubMed ID: 11447319 [TBL] [Abstract][Full Text] [Related]
12. Locating unstable periodic orbits: when adaptation integrates into delayed feedback control. Lin W; Ma H; Feng J; Chen G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046214. PubMed ID: 21230372 [TBL] [Abstract][Full Text] [Related]
13. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles. Dhamala M; Lai YC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527 [TBL] [Abstract][Full Text] [Related]
14. Lyapunov exponents from unstable periodic orbits. Franzosi R; Poggi P; Cerruti-Sola M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036218. PubMed ID: 15903557 [TBL] [Abstract][Full Text] [Related]
16. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation. Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685 [TBL] [Abstract][Full Text] [Related]
17. Periodic orbits in chaotic systems simulated at low precision. Klöwer M; Coveney PV; Paxton EA; Palmer TN Sci Rep; 2023 Jul; 13(1):11410. PubMed ID: 37452044 [TBL] [Abstract][Full Text] [Related]
18. A dynamical systems approach to the control of chaotic dynamics in a spatiotemporal jet flow. Narayanan S; Gunaratne GH; Hussain F Chaos; 2013 Sep; 23(3):033133. PubMed ID: 24089969 [TBL] [Abstract][Full Text] [Related]
19. On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system. Guo S; Luo ACJ Chaos; 2021 Apr; 31(4):043106. PubMed ID: 34251254 [TBL] [Abstract][Full Text] [Related]
20. Navigating phase space transport with the origin-fate map. Hillebrand M; Katsanikas M; Wiggins S; Skokos C Phys Rev E; 2023 Aug; 108(2-1):024211. PubMed ID: 37723690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]