These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 35364895)
1. Diffusion quantum Monte Carlo method on diradicals using single- and multi-determinant-Jastrow trial wavefunctions and different orbitals. Rao L; Wang F J Chem Phys; 2022 Mar; 156(12):124308. PubMed ID: 35364895 [TBL] [Abstract][Full Text] [Related]
2. Singlet-triplet gaps in diradicals obtained with diffusion quantum Monte Carlo using a Slater-Jastrow trial wavefunction with a minimum number of determinants. Zhou X; Wang F Phys Chem Chem Phys; 2019 Sep; 21(36):20422-20431. PubMed ID: 31501831 [TBL] [Abstract][Full Text] [Related]
3. Diffusion Monte Carlo method on small boron clusters using single- and multi- determinant-Jastrow trial wavefunctions. Peng Y; Zhou X; Wang Z; Wang F J Chem Phys; 2021 Jan; 154(2):024301. PubMed ID: 33445915 [TBL] [Abstract][Full Text] [Related]
4. Performance of the Diffusion Quantum Monte Carlo Method with a Single-Slater-Jastrow Trial Wavefunction Using Natural Orbitals and Density Functional Theory Orbitals on Atomization Energies of the Gaussian-2 Set. Wang T; Zhou X; Wang F J Phys Chem A; 2019 May; 123(17):3809-3817. PubMed ID: 30950620 [TBL] [Abstract][Full Text] [Related]
5. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo. Bouabça T; Braïda B; Caffarel M J Chem Phys; 2010 Jul; 133(4):044111. PubMed ID: 20687637 [TBL] [Abstract][Full Text] [Related]
6. Diffusion quantum Monte Carlo study on magnesium clusters as large as nanoparticles. Huang Z; Wang Z; Zhou X; Wang F J Chem Phys; 2023 Dec; 159(22):. PubMed ID: 38078521 [TBL] [Abstract][Full Text] [Related]
7. Performance of quantum Monte Carlo for calculating molecular bond lengths. Cleland DM; Per MC J Chem Phys; 2016 Mar; 144(12):124108. PubMed ID: 27036428 [TBL] [Abstract][Full Text] [Related]
8. Barrier heights of hydrogen-transfer reactions with diffusion quantum monte carlo method. Zhou X; Wang F J Comput Chem; 2017 Apr; 38(11):798-806. PubMed ID: 28251681 [TBL] [Abstract][Full Text] [Related]
9. Approaching chemical accuracy with quantum Monte Carlo. Petruzielo FR; Toulouse J; Umrigar CJ J Chem Phys; 2012 Mar; 136(12):124116. PubMed ID: 22462844 [TBL] [Abstract][Full Text] [Related]
10. Fixed-node diffusion Monte Carlo potential energy curve of the fluorine molecule F2 using selected configuration interaction trial wavefunctions. Giner E; Scemama A; Caffarel M J Chem Phys; 2015 Jan; 142(4):044115. PubMed ID: 25637977 [TBL] [Abstract][Full Text] [Related]
11. A study of the fixed-node error in quantum Monte Carlo calculations of electronic transitions: the case of the singlet n-->pi* (CO) transition of the acrolein. Bouabça T; Ben Amor N; Maynau D; Caffarel M J Chem Phys; 2009 Mar; 130(11):114107. PubMed ID: 19317531 [TBL] [Abstract][Full Text] [Related]
12. Static and Dynamical Correlation in Diradical Molecules by Quantum Monte Carlo Using the Jastrow Antisymmetrized Geminal Power Ansatz. Zen A; Coccia E; Luo Y; Sorella S; Guidoni L J Chem Theory Comput; 2014 Mar; 10(3):1048-61. PubMed ID: 26580182 [TBL] [Abstract][Full Text] [Related]
13. Diffusion Monte Carlo for Accurate Dissociation Energies of 3d Transition Metal Containing Molecules. Doblhoff-Dier K; Meyer J; Hoggan PE; Kroes GJ; Wagner LK J Chem Theory Comput; 2016 Jun; 12(6):2583-97. PubMed ID: 27175914 [TBL] [Abstract][Full Text] [Related]
14. Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids-A case study in diamond. Benali A; Gasperich K; Jordan KD; Applencourt T; Luo Y; Bennett MC; Krogel JT; Shulenburger L; Kent PRC; Loos PF; Scemama A; Caffarel M J Chem Phys; 2020 Nov; 153(18):184111. PubMed ID: 33187421 [TBL] [Abstract][Full Text] [Related]
15. Configuration interaction singles natural orbitals: an orbital basis for an efficient and size intensive multireference description of electronic excited states. Shu Y; Hohenstein EG; Levine BG J Chem Phys; 2015 Jan; 142(2):024102. PubMed ID: 25591333 [TBL] [Abstract][Full Text] [Related]
16. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo. Pathak S; Wagner LK J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315 [TBL] [Abstract][Full Text] [Related]
17. How Important is Orbital Choice in Single-Determinant Diffusion Quantum Monte Carlo Calculations? Per MC; Walker KA; Russo SP J Chem Theory Comput; 2012 Jul; 8(7):2255-9. PubMed ID: 26588958 [TBL] [Abstract][Full Text] [Related]
18. Rydberg states with quantum Monte Carlo. Bande A; Lüchow A; Della Sala F; Görling A J Chem Phys; 2006 Mar; 124(11):114114. PubMed ID: 16555881 [TBL] [Abstract][Full Text] [Related]
19. A fixed-node diffusion Monte Carlo study of the 1,2,3-tridehydrobenzene triradical. Koziol L; Morales MM J Chem Phys; 2014 Jun; 140(22):224316. PubMed ID: 24929397 [TBL] [Abstract][Full Text] [Related]
20. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo. Clay RC; Morales MA J Chem Phys; 2015 Jun; 142(23):234103. PubMed ID: 26093546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]