These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35364898)

  • 1. Reconstruction of echoes reaching bats in flight from arbitrary targets by acoustic simulation.
    Teshima Y; Hasegawa Y; Tsuchiya T; Moriyama R; Genda S; Kawamura T; Hiryu S
    J Acoust Soc Am; 2022 Mar; 151(3):2127. PubMed ID: 35364898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of echolocation behavior of bats in "echo space" using acoustic simulation.
    Teshima Y; Yamada Y; Tsuchiya T; Heim O; Hiryu S
    BMC Biol; 2022 Mar; 20(1):59. PubMed ID: 35282831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight.
    Hiryu S; Katsura K; Lin LK; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2005 Dec; 118(6):3927-33. PubMed ID: 16419835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task.
    Kinoshita Y; Ogata D; Watanabe Y; Riquimaroux H; Ohta T; Hiryu S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep; 200(9):799-809. PubMed ID: 24958227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone.
    Hiryu S; Hagino T; Riquimaroux H; Watanabe Y
    J Acoust Soc Am; 2007 Mar; 121(3):1749-57. PubMed ID: 17407911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.
    Sumiya M; Fujioka E; Motoi K; Kondo M; Hiryu S
    PLoS One; 2017; 12(1):e0169995. PubMed ID: 28085936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination of bat sonar activity and flight for the exploration of three-dimensional objects.
    Genzel D; Geberl C; Dera T; Wiegrebe L
    J Exp Biol; 2012 Jul; 215(Pt 13):2226-35. PubMed ID: 22675183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echo interval and not echo intensity drives bat flight behavior in structured corridors.
    Warnecke M; Macías S; Falk B; Moss CF
    J Exp Biol; 2018 Dec; 221(Pt 24):. PubMed ID: 30355612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey.
    Mantani S; Hiryu S; Fujioka E; Matsuta N; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct; 198(10):741-51. PubMed ID: 22777677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Echo-acoustic flow shapes object representation in spatially complex acoustic scenes.
    Greiter W; Firzlaff U
    J Neurophysiol; 2017 Jun; 117(6):2113-2124. PubMed ID: 28275060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Echolocating bats use future-target information for optimal foraging.
    Fujioka E; Aihara I; Sumiya M; Aihara K; Hiryu S
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4848-52. PubMed ID: 27071082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Population registration of echo flow in the big brown bat's auditory midbrain.
    Warnecke M; Simmons JA; Simmons AM
    J Neurophysiol; 2021 Oct; 126(4):1314-1325. PubMed ID: 34495767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-frequency soundfield microphone for the analysis of bat biosonar.
    Lee H; Roan MJ; Ming C; Simmons JA; Wang R; Müller R
    J Acoust Soc Am; 2019 Dec; 146(6):4525. PubMed ID: 31893689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An audio-vocal interface in echolocating horseshoe bats.
    Metzner W
    J Neurosci; 1993 May; 13(5):1899-915. PubMed ID: 8478683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Echo-acoustic flow dynamically modifies the cortical map of target range in bats.
    Bartenstein SK; Gerstenberg N; Vanderelst D; Peremans H; Firzlaff U
    Nat Commun; 2014 Aug; 5():4668. PubMed ID: 25131175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter.
    Hiryu S; Bates ME; Simmons JA; Riquimaroux H
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):7048-53. PubMed ID: 20351291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey.
    Geipel I; Steckel J; Tschapka M; Vanderelst D; Schnitzler HU; Kalko EKV; Peremans H; Simon R
    Curr Biol; 2019 Aug; 29(16):2731-2736.e3. PubMed ID: 31378617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-board recordings reveal no jamming avoidance in wild bats.
    Cvikel N; Levin E; Hurme E; Borissov I; Boonman A; Amichai E; Yovel Y
    Proc Biol Sci; 2015 Jan; 282(1798):20142274. PubMed ID: 25429017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segregating signal from noise through movement in echolocating bats.
    Taub M; Yovel Y
    Sci Rep; 2020 Jan; 10(1):382. PubMed ID: 31942008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.