These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Computation of scattering of a plane wave from multiple prolate spheroids using the collocation multipole method. Lee WM; Chen JT J Acoust Soc Am; 2016 Oct; 140(4):2235. PubMed ID: 27794351 [TBL] [Abstract][Full Text] [Related]
3. An efficient probabilistic approach to vibro-acoustic analysis based on the Gaussian orthogonal ensemble. Reynders E; Legault J; Langley RS J Acoust Soc Am; 2014 Jul; 136(1):201-12. PubMed ID: 24993207 [TBL] [Abstract][Full Text] [Related]
4. Sound Field Reconstruction Using Prolate Spheroidal Wave Functions and Sparse Regularization. Zhang X; Lou J; Zhu S; Lu J; Li R Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837142 [TBL] [Abstract][Full Text] [Related]
5. Spatial-temporal correlation of a diffuse sound field. Rafaely B J Acoust Soc Am; 2000 Jun; 107(6):3254-8. PubMed ID: 10875370 [TBL] [Abstract][Full Text] [Related]
6. A wave field synthesis approach to reproduction of spatially correlated sound fields. Berry A; Dia R; Robin O J Acoust Soc Am; 2012 Feb; 131(2):1226-39. PubMed ID: 22352497 [TBL] [Abstract][Full Text] [Related]
8. Efficient realization of on-demand functional ultrasonic fields based on prolate spheroidal wave functions from sampling theorem. Shen YX; Zhu XF J Acoust Soc Am; 2022 Jan; 151(1):96. PubMed ID: 35105000 [TBL] [Abstract][Full Text] [Related]
9. Acoustic modal analysis of room responses from the perspective of state-space balanced realization with application to field interpolation. Jian HM; Chen YS; Bai MR J Acoust Soc Am; 2022 Jul; 152(1):240. PubMed ID: 35931519 [TBL] [Abstract][Full Text] [Related]
11. Acoustic field variability induced by time evolving internal wave fields. Finette S; Orr MH; Turgut A; Apel JR; Badiey M; Chiu CS; Headrick RH; Kemp JN; Lynch JF; Newhall AE; von der Heydt K ; Pasewark B; Wolf SN; Tielbuerger D J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):957-72. PubMed ID: 11008800 [TBL] [Abstract][Full Text] [Related]
12. Spatial reconstruction of sound fields using local and data-driven functions. Hahmann M; Verburg SA; Fernandez-Grande E J Acoust Soc Am; 2021 Dec; 150(6):4417. PubMed ID: 34972270 [TBL] [Abstract][Full Text] [Related]
13. Scattering of a spheroidal particle illuminated by a gaussian beam. Han Y; Wu Z Appl Opt; 2001 May; 40(15):2501-9. PubMed ID: 18357263 [TBL] [Abstract][Full Text] [Related]
14. Correspondence between sound propagation in discrete and continuous random media with application to forest acoustics. Ostashev VE; Wilson DK; Muhlestein MB; Attenborough K J Acoust Soc Am; 2018 Feb; 143(2):1194. PubMed ID: 29495703 [TBL] [Abstract][Full Text] [Related]
15. Investigation of damping effects on low-frequency steady-state acoustical behaviour of coupled spaces. Meissner M; Wiśniewski K R Soc Open Sci; 2020 Aug; 7(8):200514. PubMed ID: 32968516 [TBL] [Abstract][Full Text] [Related]
16. Spatial correlation and coherence in reverberant acoustic fields: Extension to microphones with arbitrary first-order directivity. Kuster M J Acoust Soc Am; 2008 Jan; 123(1):154-62. PubMed ID: 18177147 [TBL] [Abstract][Full Text] [Related]
17. The prolate spheroidal wave functions as invariants of the time reversal operator for an extended scatterer in the Fraunhofer approximation. Robert JL; Fink M J Acoust Soc Am; 2009 Jan; 125(1):218-26. PubMed ID: 19173409 [TBL] [Abstract][Full Text] [Related]
19. Two definitions of the inner product of modes and their use in calculating non-diffuse reverberant sound fields. Nolan M; Davy JL J Acoust Soc Am; 2019 Jun; 145(6):3330. PubMed ID: 31255115 [TBL] [Abstract][Full Text] [Related]
20. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation. Blanc-Benon P; Lipkens B; Dallois L; Hamilton MF; Blackstock DT J Acoust Soc Am; 2002 Jan; 111(1 Pt 2):487-98. PubMed ID: 11837954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]