These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35364942)

  • 21. Modeling and design of two-dimensional membrane-type active acoustic metamaterials with tunable anisotropic density.
    Allam A; Elsabbagh A; Akl W
    J Acoust Soc Am; 2016 Nov; 140(5):3607. PubMed ID: 27908040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances.
    Cheng Y; Zhou C; Yuan BG; Wu DJ; Wei Q; Liu XJ
    Nat Mater; 2015 Oct; 14(10):1013-9. PubMed ID: 26322718
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of two invisibility cloaks using transmissive and reflective metamaterial-based multilayer frame microstructures.
    Jing X; Feng D; Tian Y; Li M; Chu C; Li C; He Y; Gan H; Hong Z
    Opt Express; 2020 Nov; 28(24):35528-35539. PubMed ID: 33379666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active control of graphene-based membrane-type acoustic metamaterials using a low voltage.
    Li Y; Wang S; Peng Q; Zhou Z; Yang Z; He X; Li Y
    Nanoscale; 2019 Sep; 11(35):16384-16392. PubMed ID: 31436776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acoustic scattering from a fluid cylinder with Willis constitutive properties.
    Muhlestein MB; Goldsberry BM; Norris AN; Haberman MR
    Proc Math Phys Eng Sci; 2018 Dec; 474(2220):20180571. PubMed ID: 30602938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Information Metamaterial Systems.
    Cui TJ; Li L; Liu S; Ma Q; Zhang L; Wan X; Jiang WX; Cheng Q
    iScience; 2020 Aug; 23(8):101403. PubMed ID: 32777776
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcranial Acoustic Metamaterial Parameters Inverse Designed by Neural Networks.
    Yang Y; Jiang D; Zhang Q; Le X; Chen T; Duan H; Zheng Y
    BME Front; 2023; 4():0030. PubMed ID: 37849682
    [No Abstract]   [Full Text] [Related]  

  • 28. An adjustable acoustic metamaterial cell using a magnetic membrane for tunable resonance.
    Gardiner A; Domingo-Roca R; Windmill JFC; Feeney A
    Sci Rep; 2024 Jul; 14(1):15044. PubMed ID: 38951634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel Design Scheme for Structural Fundamental Frequency of Porous Acoustic Metamaterials.
    Zhou Y; Li H; Ye M; Shi Y; Gao L
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complementary Acoustic Metamaterial for Penetrating Aberration Layers.
    Li L; Diao Y; Wu H; Jiang W
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28604-28614. PubMed ID: 35726703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acoustic Supercoupling in a Zero-Compressibility Waveguide.
    Esfahlani H; Byrne MS; McDermott M; Alù A
    Research (Wash D C); 2019; 2019():2457870. PubMed ID: 31549050
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reprogrammable Phononic Metasurfaces.
    Bilal OR; Foehr A; Daraio C
    Adv Mater; 2017 Oct; 29(39):. PubMed ID: 28841769
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active Acoustic Metamaterial Based on Helmholtz Resonators to Absorb Broadband Low-Frequency Noise.
    Hedayati R; Lakshmanan SP
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double negative elastic metamaterial design through electrical-mechanical circuit analogies.
    Pope SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1467-74. PubMed ID: 25004513
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal Willis Coupling in Spatiotemporal Diffusive Metamaterials.
    Xu L; Xu G; Li J; Li Y; Huang J; Qiu CW
    Phys Rev Lett; 2022 Oct; 129(15):155901. PubMed ID: 36269965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digitally virtualized atoms for acoustic metamaterials.
    Cho C; Wen X; Park N; Li J
    Nat Commun; 2020 Jan; 11(1):251. PubMed ID: 31937781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Achieving Environmentally-Adaptive and Multifunctional Hydrodynamic Metamaterials through Active Control.
    Jiang C; Nie H; Chen M; Shen X; Xu L
    Adv Mater; 2024 Mar; ():e2313986. PubMed ID: 38507727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acoustic Amplifying Diode Using Nonreciprocal Willis Coupling.
    Wen X; Yip HK; Cho C; Li J; Park N
    Phys Rev Lett; 2023 Apr; 130(17):176101. PubMed ID: 37172257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Material-structure integrated design for ultra-broadband all-dielectric metamaterial absorber.
    Peng M; Qin F; Zhou L; Wei H; Zhu Z; Shen X
    J Phys Condens Matter; 2021 Dec; 34(11):. PubMed ID: 34905743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.
    Decker M; Staude I; Shishkin II; Samusev KB; Parkinson P; Sreenivasan VK; Minovich A; Miroshnichenko AE; Zvyagin A; Jagadish C; Neshev DN; Kivshar YS
    Nat Commun; 2013; 4():2949. PubMed ID: 24335832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.