These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65. Quantum Optical Effective-Medium Theory for Layered Metamaterials at Any Angle of Incidence. Amooghorban E; Wubs M Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678047 [TBL] [Abstract][Full Text] [Related]
66. Double-negative acoustic metamaterial. Li J; Chan CT Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):055602. PubMed ID: 15600684 [TBL] [Abstract][Full Text] [Related]
67. Evaluation of the resolution of a metamaterial acoustic leaky wave antenna. Naify CJ; Rogers JS; Guild MD; Rohde CA; Orris GJ J Acoust Soc Am; 2016 Jun; 139(6):3251. PubMed ID: 27369149 [TBL] [Abstract][Full Text] [Related]
69. Current developments in elastic and acoustic metamaterials science. Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2279):20240038. PubMed ID: 39129405 [TBL] [Abstract][Full Text] [Related]
70. Current developments in elastic and acoustic metamaterials science. Failla G; Marzani A; Palermo A; Russillo AF; Colquitt D Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230369. PubMed ID: 39069760 [TBL] [Abstract][Full Text] [Related]
72. A terahertz metamaterial with unnaturally high refractive index. Choi M; Lee SH; Kim Y; Kang SB; Shin J; Kwak MH; Kang KY; Lee YH; Park N; Min B Nature; 2011 Feb; 470(7334):369-73. PubMed ID: 21331038 [TBL] [Abstract][Full Text] [Related]
73. Vanadium dioxide based broadband THz metamaterial absorbers with high tunability: simulation study. Wang S; Cai C; You M; Liu F; Wu M; Li S; Bao H; Kang L; Werner DH Opt Express; 2019 Jul; 27(14):19436-19447. PubMed ID: 31503703 [TBL] [Abstract][Full Text] [Related]
74. Nonlocal effective medium theory for phononic temporal metamaterials. Wang N; Feng F; Wang GP J Phys Condens Matter; 2023 Dec; 36(10):. PubMed ID: 37976544 [TBL] [Abstract][Full Text] [Related]
75. Membrane-type smart metamaterials for multi-modal sound insulation. Zhang X; Chen F; Chen Z; Wang G J Acoust Soc Am; 2018 Dec; 144(6):3514. PubMed ID: 30599690 [TBL] [Abstract][Full Text] [Related]
76. Loss-free and active optical negative-index metamaterials. Xiao S; Drachev VP; Kildishev AV; Ni X; Chettiar UK; Yuan HK; Shalaev VM Nature; 2010 Aug; 466(7307):735-8. PubMed ID: 20686570 [TBL] [Abstract][Full Text] [Related]
77. Reversed Doppler effect based on hybridized acoustic Mie resonances. Liu C; Long H; Zhou C; Cheng Y; Liu X Sci Rep; 2020 Jan; 10(1):1519. PubMed ID: 32001753 [TBL] [Abstract][Full Text] [Related]
78. Cloaking In-Plane Elastic Waves with Swiss Rolls. Achaoui Y; Diatta A; Kadic M; Guenneau S Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963495 [TBL] [Abstract][Full Text] [Related]
79. Generative adversarial networks for the design of acoustic metamaterials. Gurbuz C; Kronowetter F; Dietz C; Eser M; Schmid J; Marburg S J Acoust Soc Am; 2021 Feb; 149(2):1162. PubMed ID: 33639806 [TBL] [Abstract][Full Text] [Related]
80. Design and experimental validation of a finite-size labyrinthine metamaterial for vibro-acoustics: enabling upscaling towards large-scale structures. Hermann S; Billon K; Parlak AM; Orlowsky J; Collet M; Madeo A Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230367. PubMed ID: 39069763 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]