These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35364942)

  • 81. Amplification of acoustic evanescent waves using metamaterial slabs.
    Park CM; Park JJ; Lee SH; Seo YM; Kim CK; Lee SH
    Phys Rev Lett; 2011 Nov; 107(19):194301. PubMed ID: 22181610
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Non-Foster acoustic radiation from an active piezoelectric transducer.
    Rasmussen C; Alù A
    Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34282009
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Determination of the effective constitutive parameters of bianisotropic planar metamaterials in the terahertz region.
    Jing X; Xia R; Wang W; Tian Y; Hong Z
    J Opt Soc Am A Opt Image Sci Vis; 2016 May; 33(5):954-61. PubMed ID: 27140893
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A Low-Cost Metamaterial Sensor Based on DS-CSRR for Material Characterization Applications.
    Shahzad W; Hu W; Ali Q; Raza H; Abbas SM; Ligthart LP
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271147
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Double Negativity in 3D Space Coiling Metamaterials.
    Maurya SK; Pandey A; Shukla S; Saxena S
    Sci Rep; 2016 Sep; 6():33683. PubMed ID: 27649966
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Deep-Learning-Based Acoustic Metamaterial Design for Attenuating Structure-Borne Noise in Auditory Frequency Bands.
    Liu TW; Chan CT; Wu RT
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902994
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Non-reciprocal and highly nonlinear active acoustic metamaterials.
    Popa BI; Cummer SA
    Nat Commun; 2014 Feb; 5():3398. PubMed ID: 24572771
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Genuine effectively biaxial left-handed metamaterials due to extreme coupling.
    Menzel C; Alaee R; Pshenay-Severin E; Helgert C; Chipouline A; Rockstuhl C; Pertsch T; Lederer F
    Opt Lett; 2012 Feb; 37(4):596-8. PubMed ID: 22344118
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Effect of Substrate Etching on Terahertz Metamaterial Resonances and Its Liquid Sensing Applications.
    Park SJ; Cunningham J
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492949
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Elastic metamaterials for independent realization of negativity in density and stiffness.
    Oh JH; Kwon YE; Lee HJ; Kim YY
    Sci Rep; 2016 Mar; 6():23630. PubMed ID: 27006310
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials.
    Chen Y; Liu H; Reilly M; Bae H; Yu M
    Nat Commun; 2014 Oct; 5():5247. PubMed ID: 25316410
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Ultrabroadband elastic cloaking in thin plates.
    Farhat M; Guenneau S; Enoch S
    Phys Rev Lett; 2009 Jul; 103(2):024301. PubMed ID: 19659209
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Tailoring broadband acoustic energy suppression characteristics of double porosity metamaterials with compression constraints and mass inclusions.
    Cui S; Harne RL
    J Acoust Soc Am; 2017 Jun; 141(6):4715. PubMed ID: 28679247
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Tunable Transmission and Deterministic Interface states in Double-zero-index Acoustic Metamaterials.
    Zhao W; Yang Y; Tao Z; Hang ZH
    Sci Rep; 2018 Apr; 8(1):6311. PubMed ID: 29679074
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Design and Analysis of Multi-Layer and Cuboid Coding Metamaterials for Radar Cross-Section Reduction.
    Ramachandran T; Faruque MRI; Islam MT; Khandaker MU; Tamam N; Sulieman A
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744341
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Nonreciprocal field transformation with active acoustic metasurfaces.
    Wen X; Cho C; Zhu X; Park N; Li J
    Sci Adv; 2024 May; 10(22):eadm9673. PubMed ID: 38820157
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Self-Assembled Epitaxial Au-Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials.
    Li L; Sun L; Gomez-Diaz JS; Hogan NL; Lu P; Khatkhatay F; Zhang W; Jian J; Huang J; Su Q; Fan M; Jacob C; Li J; Zhang X; Jia Q; Sheldon M; Alù A; Li X; Wang H
    Nano Lett; 2016 Jun; 16(6):3936-43. PubMed ID: 27186652
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Anisotropic acoustic metafluid for underwater operation.
    Popa BI; Wang W; Konneker A; Cummer SA; Rohde CA; Martin TP; Orris GJ; Guild MD
    J Acoust Soc Am; 2016 Jun; 139(6):3325. PubMed ID: 27369158
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Direct measurement of evanescent wave enhancement inside passive metamaterials.
    Popa BI; Cummer SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016617. PubMed ID: 16486305
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Modulating Sound with Acoustic Metafiber Bundles.
    Xia JP; Sun HX; Yuan SQ
    Sci Rep; 2017 Aug; 7(1):8151. PubMed ID: 28811586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.