BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35365666)

  • 1. MeadoWatch: a long-term community-science database of wildflower phenology in Mount Rainier National Park.
    Manzanedo RD; John A; Sethi ML; Theobald EJ; Brosi B; Jenkins J; Kloss-Schmidt A; Lia E; Schiffer A; Sevigny J; Wilson A; Yogev Y; Hille Ris Lambers J
    Sci Data; 2022 Apr; 9(1):151. PubMed ID: 35365666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Convolutional Neural Networks to Efficiently Extract Immense Phenological Data From Community Science Images.
    Reeb RA; Aziz N; Lapp SM; Kitzes J; Heberling JM; Kuebbing SE
    Front Plant Sci; 2021; 12():787407. PubMed ID: 35111176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifts in flowering phenology reshape a subalpine plant community.
    CaraDonna PJ; Iler AM; Inouye DW
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4916-21. PubMed ID: 24639544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practice makes the expert: The importance of training volunteers in the generation of phenological data from photographs of biodiversity observation platforms.
    Salomé-Díaz J; Golubov J; Díaz-Segura O; Ramírez-Gutiérrez MC; Sifuentes de la Torre S; Koleff P; Quintero E; Martínez AJ
    PLoS One; 2023; 18(3):e0282750. PubMed ID: 36881607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. USA National Phenology Network's volunteer-contributed observations yield predictive models of phenological transitions.
    Crimmins TM; Crimmins MA; Gerst KL; Rosemartin AH; Weltzin JF
    PLoS One; 2017; 12(8):e0182919. PubMed ID: 28829783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenological sequences: how early-season events define those that follow.
    Ettinger AK; Gee S; Wolkovich EM
    Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing accuracy in citizen science-based plant phenology monitoring.
    Fuccillo KK; Crimmins TM; de Rivera CE; Elder TS
    Int J Biometeorol; 2015 Jul; 59(7):917-26. PubMed ID: 25179528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant phenological responses to experimental warming-A synthesis.
    Stuble KL; Bennion LD; Kuebbing SE
    Glob Chang Biol; 2021 Sep; 27(17):4110-4124. PubMed ID: 33993588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How training citizen scientists affects the accuracy and precision of phenological data.
    Feldman RE; Žemaitė I; Miller-Rushing AJ
    Int J Biometeorol; 2018 Aug; 62(8):1421-1435. PubMed ID: 29732472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal Variation of
    Wang X; Liu Y; Li X; He S; Zhong M; Shang F
    Front Plant Sci; 2021; 12():716071. PubMed ID: 35126403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flowering date of taxonomic families predicts phenological sensitivity to temperature: Implications for forecasting the effects of climate change on unstudied taxa.
    Mazer SJ; Travers SE; Cook BI; Davies TJ; Bolmgren K; Kraft NJ; Salamin N; Inouye DW
    Am J Bot; 2013 Jul; 100(7):1381-97. PubMed ID: 23752756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska.
    Khorsand Rosa R; Oberbauer SF; Starr G; Parker La Puma I; Pop E; Ahlquist L; Baldwin T
    Glob Chang Biol; 2015 Dec; 21(12):4520-32. PubMed ID: 26183112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced spring temperature sensitivity of carbon emission links to earlier phenology.
    Meng F; Zhang L; Zhang Z; Jiang L; Wang Y; Duan J; Wang Q; Li B; Liu P; Hong H; Lv W; Renzeng W; Wang Z; Luo C; Dorji T; Zhou H; Du M; Luo Y; Wang S
    Sci Total Environ; 2020 Nov; 745():140999. PubMed ID: 32738686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic selection for early reproductive phenology in an annual plant across a steep, elevational gradient of growing season length.
    Ensing DJ; Sora DMDH; Eckert CG
    Evolution; 2021 Jul; 75(7):1681-1698. PubMed ID: 34048598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter and intraspecific variation on reproductive phenology of the Brazilian Atlantic forest Rubiaceae: ecology and phylogenetic constraints.
    SanMartin-Gajardo I; Morellato LP
    Rev Biol Trop; 2003; 51(3-4):691-8. PubMed ID: 15162775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenological changes in herbaceous plants in China's grasslands and their responses to climate change: a meta-analysis.
    Huang W; Dai J; Wang W; Li J; Feng C; Du J
    Int J Biometeorol; 2020 Nov; 64(11):1865-1876. PubMed ID: 32734424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows.
    Li L; Li Z; Cadotte MW; Jia P; Chen G; Jin LS; Du G
    Oecologia; 2016 Oct; 182(2):419-28. PubMed ID: 27351544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CrowdCurio: an online crowdsourcing platform to facilitate climate change studies using herbarium specimens.
    Willis CG; Law E; Williams AC; Franzone BF; Bernardos R; Bruno L; Hopkins C; Schorn C; Weber E; Park DS; Davis CC
    New Phytol; 2017 Jul; 215(1):479-488. PubMed ID: 28394023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.