These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35365666)

  • 21. Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps.
    Cornelius C; Estrella N; Franz H; Menzel A
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():57-69. PubMed ID: 22686251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changing Climate Drives Divergent and Nonlinear Shifts in Flowering Phenology across Elevations.
    Rafferty NE; Diez JM; Bertelsen CD
    Curr Biol; 2020 Feb; 30(3):432-441.e3. PubMed ID: 31902725
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flowering phenology and compensation for herbivory in Ipomopsis aggregata.
    Freeman RS; Brody AK; Neefus CD
    Oecologia; 2003 Aug; 136(3):394-401. PubMed ID: 12783294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local environment, not local adaptation, drives leaf-out phenology in common gardens along an elevational gradient in Acadia National Park, Maine.
    McDonough MacKenzie C; Primack RB; Miller-Rushing AJ
    Am J Bot; 2018 Jun; 105(6):986-995. PubMed ID: 29957884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flowering and fruiting phenology of tree species in mount papandayan nature reserve, west java, indonesia.
    Sulistyawati E; Mashita N; Setiawan NN; Choesin DN; Suryana P
    Trop Life Sci Res; 2012 Dec; 23(2):81-95. PubMed ID: 24575236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting the sensitivity of butterfly phenology to temperature over the past century.
    Kharouba HM; Paquette SR; Kerr JT; Vellend M
    Glob Chang Biol; 2014 Feb; 20(2):504-14. PubMed ID: 24249425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Snow melt timing acts independently and in conjunction with temperature accumulation to drive subalpine plant phenology.
    Jerome DK; Petry WK; Mooney KA; Iler AM
    Glob Chang Biol; 2021 Oct; 27(20):5054-5069. PubMed ID: 34265142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lilies at the limit: Variation in plant-pollinator interactions across an elevational range.
    Theobald EJ; Gabrielyan H; HilleRisLambers J
    Am J Bot; 2016 Feb; 103(2):189-97. PubMed ID: 26865124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term temporal changes in central European tree phenology (1946-2010) confirm the recent extension of growing seasons.
    Kolářová E; Nekovář J; Adamík P
    Int J Biometeorol; 2014 Oct; 58(8):1739-48. PubMed ID: 24389748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Arctic plant phenological sensitivity to climate change from historical records.
    Panchen ZA; Gorelick R
    Ecol Evol; 2017 Mar; 7(5):1325-1338. PubMed ID: 28261446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenology of Spondias tuberosa Arruda (Anacardiaceae) under different landscape management regimes and a proposal for a rapid phenological diagnosis using local knowledge.
    Lins Neto EM; Almeida AL; Peroni N; Castro CC; Albuquerque UP
    J Ethnobiol Ethnomed; 2013 Jan; 9():10. PubMed ID: 23369197
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparing fruiting phenology across two historical datasets: Thoreau's observations and herbarium specimens.
    Miller TK; Gallinat AS; Smith LC; Primack RB
    Ann Bot; 2021 Jul; 128(2):159-170. PubMed ID: 33830225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Herbarium records indicate variation in bloom-time sensitivity to temperature across a geographically diverse region.
    Kopp CW; Neto-Bradley BM; Lipsen LPJ; Sandhar J; Smith S
    Int J Biometeorol; 2020 May; 64(5):873-880. PubMed ID: 32112132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plants with lengthened phenophases increase their dominance under warming in an alpine plant community.
    Chen J; Luo Y; Chen Y; Felton AJ; Hopping KA; Wang RW; Niu S; Cheng X; Zhang Y; Cao J; Olesen JE; Andersen MN; Jørgensen U
    Sci Total Environ; 2020 Aug; 728():138891. PubMed ID: 32361364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Daily Maximum Temperatures Induce Lagged Effects on Leaf Unfolding in Temperate Woody Species Across Large Elevational Gradients.
    Bigler C; Vitasse Y
    Front Plant Sci; 2019; 10():398. PubMed ID: 30984231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenological responses to climate change do not exhibit phylogenetic signal in a subalpine plant community.
    CaraDonna PJ; Inouye DW
    Ecology; 2015 Feb; 96(2):355-61. PubMed ID: 26240857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset.
    Czernecki B; Nowosad J; Jabłońska K
    Int J Biometeorol; 2018 Jul; 62(7):1297-1309. PubMed ID: 29644431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finnish National Phenological Network 1997-2017: from observations to trend detection.
    Helama S; Tolvanen A; Karhu J; Poikolainen J; Kubin E
    Int J Biometeorol; 2020 Oct; 64(10):1783-1793. PubMed ID: 32632472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.